Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979501008> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2979501008 abstract "Deep learning techniques have recently been successful in the classification of brain evoked responses for multiple applications, including brain-machine interface. Single-trial detection in the electroencephalogram (EEG) of brain evoked responses, like event-related potentials (ERPs), requires multiple processing stages, in the spatial and temporal domains, to extract high level features. Convolutional neural networks, as a type of deep learning method, have been used for EEG signal detection as the underlying structure of the EEG signal can be included in such system, facilitating the learning step. The EEG signal is typically decomposed into 2 main dimensions: space and time. However, the spatial dimension can be decomposed into 2 dimensions that better represent the relationships between the sensors that are involved in the classification. We propose to analyze the performance of 2D and 3D convolutional neural networks for the classification of ERPs with a dataset based on 64 EEG channels. We propose and compare 6 conv net architectures: 4 using 3D convolutions, that vary in relation to the number of layers and feature maps, and 2 using 2D convolutions. The results support the conclusion that 3D convolutions provide better performance than 2D convolutions for the binary classification of ERPs." @default.
- W2979501008 created "2019-10-18" @default.
- W2979501008 creator A5025447862 @default.
- W2979501008 creator A5048583784 @default.
- W2979501008 date "2019-07-01" @default.
- W2979501008 modified "2023-10-18" @default.
- W2979501008 title "3D Convolutional Neural Networks for Event-Related Potential detection" @default.
- W2979501008 cites W1937389136 @default.
- W2979501008 cites W1983364832 @default.
- W2979501008 cites W2006393489 @default.
- W2979501008 cites W2012896898 @default.
- W2979501008 cites W2040971730 @default.
- W2979501008 cites W2044310907 @default.
- W2979501008 cites W2060472216 @default.
- W2979501008 cites W2066435223 @default.
- W2979501008 cites W2105957367 @default.
- W2979501008 cites W2121682721 @default.
- W2979501008 cites W2150590430 @default.
- W2979501008 cites W2336274017 @default.
- W2979501008 cites W2507528282 @default.
- W2979501008 cites W2546302380 @default.
- W2979501008 cites W2557301950 @default.
- W2979501008 cites W2741907166 @default.
- W2979501008 cites W3102455230 @default.
- W2979501008 doi "https://doi.org/10.1109/embc.2019.8856485" @default.
- W2979501008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31946786" @default.
- W2979501008 hasPublicationYear "2019" @default.
- W2979501008 type Work @default.
- W2979501008 sameAs 2979501008 @default.
- W2979501008 citedByCount "5" @default.
- W2979501008 countsByYear W29795010082020 @default.
- W2979501008 countsByYear W29795010082021 @default.
- W2979501008 countsByYear W29795010082022 @default.
- W2979501008 countsByYear W29795010082023 @default.
- W2979501008 crossrefType "proceedings-article" @default.
- W2979501008 hasAuthorship W2979501008A5025447862 @default.
- W2979501008 hasAuthorship W2979501008A5048583784 @default.
- W2979501008 hasConcept C108583219 @default.
- W2979501008 hasConcept C12267149 @default.
- W2979501008 hasConcept C138885662 @default.
- W2979501008 hasConcept C153180895 @default.
- W2979501008 hasConcept C154945302 @default.
- W2979501008 hasConcept C15744967 @default.
- W2979501008 hasConcept C169760540 @default.
- W2979501008 hasConcept C173201364 @default.
- W2979501008 hasConcept C199360897 @default.
- W2979501008 hasConcept C2776401178 @default.
- W2979501008 hasConcept C2779843651 @default.
- W2979501008 hasConcept C28490314 @default.
- W2979501008 hasConcept C41008148 @default.
- W2979501008 hasConcept C41895202 @default.
- W2979501008 hasConcept C522805319 @default.
- W2979501008 hasConcept C52622490 @default.
- W2979501008 hasConcept C66905080 @default.
- W2979501008 hasConcept C81363708 @default.
- W2979501008 hasConceptScore W2979501008C108583219 @default.
- W2979501008 hasConceptScore W2979501008C12267149 @default.
- W2979501008 hasConceptScore W2979501008C138885662 @default.
- W2979501008 hasConceptScore W2979501008C153180895 @default.
- W2979501008 hasConceptScore W2979501008C154945302 @default.
- W2979501008 hasConceptScore W2979501008C15744967 @default.
- W2979501008 hasConceptScore W2979501008C169760540 @default.
- W2979501008 hasConceptScore W2979501008C173201364 @default.
- W2979501008 hasConceptScore W2979501008C199360897 @default.
- W2979501008 hasConceptScore W2979501008C2776401178 @default.
- W2979501008 hasConceptScore W2979501008C2779843651 @default.
- W2979501008 hasConceptScore W2979501008C28490314 @default.
- W2979501008 hasConceptScore W2979501008C41008148 @default.
- W2979501008 hasConceptScore W2979501008C41895202 @default.
- W2979501008 hasConceptScore W2979501008C522805319 @default.
- W2979501008 hasConceptScore W2979501008C52622490 @default.
- W2979501008 hasConceptScore W2979501008C66905080 @default.
- W2979501008 hasConceptScore W2979501008C81363708 @default.
- W2979501008 hasLocation W29795010081 @default.
- W2979501008 hasLocation W29795010082 @default.
- W2979501008 hasOpenAccess W2979501008 @default.
- W2979501008 hasPrimaryLocation W29795010081 @default.
- W2979501008 hasRelatedWork W2059299633 @default.
- W2979501008 hasRelatedWork W2128739463 @default.
- W2979501008 hasRelatedWork W2279398222 @default.
- W2979501008 hasRelatedWork W2732542196 @default.
- W2979501008 hasRelatedWork W2738221750 @default.
- W2979501008 hasRelatedWork W2760085659 @default.
- W2979501008 hasRelatedWork W2773120646 @default.
- W2979501008 hasRelatedWork W3011074480 @default.
- W2979501008 hasRelatedWork W3156786002 @default.
- W2979501008 hasRelatedWork W4299822940 @default.
- W2979501008 isParatext "false" @default.
- W2979501008 isRetracted "false" @default.
- W2979501008 magId "2979501008" @default.
- W2979501008 workType "article" @default.