Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979507862> ?p ?o ?g. }
- W2979507862 endingPage "103226" @default.
- W2979507862 startingPage "103226" @default.
- W2979507862 abstract "Environmental sound signals are multi-source, heterogeneous, and varying in time. Many systems have been proposed to process such signals for event detection in ambient assisted living applications. Typically, these systems use feature extraction, selection, and classification. However, despite major advances, several important questions remain unanswered, especially in real-world settings. This paper contributes to the body of knowledge in the field by addressing the following problems for ambient sounds recorded in various real-world kitchen environments: (1) which features and which classifiers are most suitable in the presence of background noise? (2) what is the effect of signal duration on recognition accuracy? (3) how do the signal-to-noise-ratio and the distance between the microphone and the audio source affect the recognition accuracy in an environment in which the system was not trained? We show that for systems that use traditional classifiers, it is beneficial to combine gammatone frequency cepstral coefficients and discrete wavelet transform coefficients and to use a gradient boosting classifier. For systems based on deep learning, we consider 1D and 2D Convolutional Neural Networks (CNN) using mel-spectrogram energies and mel-spectrograms images as inputs, respectively, and show that the 2D CNN outperforms the 1D CNN. We obtained competitive classification results for two such systems. The first one, which uses a gradient boosting classifier, achieved an F1-Score of 90.2% and a recognition accuracy of 91.7%. The second one, which uses a 2D CNN with mel-spectrogram images, achieved an F1-Score of 92.7% and a recognition accuracy of 96%." @default.
- W2979507862 created "2019-10-18" @default.
- W2979507862 creator A5000523843 @default.
- W2979507862 creator A5007136125 @default.
- W2979507862 creator A5025449942 @default.
- W2979507862 creator A5064307246 @default.
- W2979507862 creator A5078026673 @default.
- W2979507862 creator A5087452615 @default.
- W2979507862 date "2020-03-01" @default.
- W2979507862 modified "2023-09-30" @default.
- W2979507862 title "Audio content analysis for unobtrusive event detection in smart homes" @default.
- W2979507862 cites W1677236997 @default.
- W2979507862 cites W2023302299 @default.
- W2979507862 cites W2042034007 @default.
- W2979507862 cites W2052384514 @default.
- W2979507862 cites W2054780155 @default.
- W2979507862 cites W2059372649 @default.
- W2979507862 cites W2103235956 @default.
- W2979507862 cites W2117326161 @default.
- W2979507862 cites W2126868529 @default.
- W2979507862 cites W2130640900 @default.
- W2979507862 cites W2137343183 @default.
- W2979507862 cites W2148633389 @default.
- W2979507862 cites W2191779130 @default.
- W2979507862 cites W2222280452 @default.
- W2979507862 cites W2253429366 @default.
- W2979507862 cites W2267337814 @default.
- W2979507862 cites W2557695132 @default.
- W2979507862 cites W2561826558 @default.
- W2979507862 cites W2591013610 @default.
- W2979507862 cites W2594116048 @default.
- W2979507862 cites W2605646998 @default.
- W2979507862 cites W2626553841 @default.
- W2979507862 cites W2676925568 @default.
- W2979507862 cites W2743986694 @default.
- W2979507862 cites W2754744771 @default.
- W2979507862 cites W2964048371 @default.
- W2979507862 cites W3098357269 @default.
- W2979507862 cites W85726508 @default.
- W2979507862 doi "https://doi.org/10.1016/j.engappai.2019.08.020" @default.
- W2979507862 hasPublicationYear "2020" @default.
- W2979507862 type Work @default.
- W2979507862 sameAs 2979507862 @default.
- W2979507862 citedByCount "28" @default.
- W2979507862 countsByYear W29795078622020 @default.
- W2979507862 countsByYear W29795078622021 @default.
- W2979507862 countsByYear W29795078622022 @default.
- W2979507862 countsByYear W29795078622023 @default.
- W2979507862 crossrefType "journal-article" @default.
- W2979507862 hasAuthorship W2979507862A5000523843 @default.
- W2979507862 hasAuthorship W2979507862A5007136125 @default.
- W2979507862 hasAuthorship W2979507862A5025449942 @default.
- W2979507862 hasAuthorship W2979507862A5064307246 @default.
- W2979507862 hasAuthorship W2979507862A5078026673 @default.
- W2979507862 hasAuthorship W2979507862A5087452615 @default.
- W2979507862 hasBestOaLocation W29795078622 @default.
- W2979507862 hasConcept C151989614 @default.
- W2979507862 hasConcept C153180895 @default.
- W2979507862 hasConcept C154945302 @default.
- W2979507862 hasConcept C2778263558 @default.
- W2979507862 hasConcept C28490314 @default.
- W2979507862 hasConcept C41008148 @default.
- W2979507862 hasConcept C45273575 @default.
- W2979507862 hasConcept C46686674 @default.
- W2979507862 hasConcept C52622490 @default.
- W2979507862 hasConcept C68115822 @default.
- W2979507862 hasConcept C76155785 @default.
- W2979507862 hasConcept C81363708 @default.
- W2979507862 hasConcept C95623464 @default.
- W2979507862 hasConceptScore W2979507862C151989614 @default.
- W2979507862 hasConceptScore W2979507862C153180895 @default.
- W2979507862 hasConceptScore W2979507862C154945302 @default.
- W2979507862 hasConceptScore W2979507862C2778263558 @default.
- W2979507862 hasConceptScore W2979507862C28490314 @default.
- W2979507862 hasConceptScore W2979507862C41008148 @default.
- W2979507862 hasConceptScore W2979507862C45273575 @default.
- W2979507862 hasConceptScore W2979507862C46686674 @default.
- W2979507862 hasConceptScore W2979507862C52622490 @default.
- W2979507862 hasConceptScore W2979507862C68115822 @default.
- W2979507862 hasConceptScore W2979507862C76155785 @default.
- W2979507862 hasConceptScore W2979507862C81363708 @default.
- W2979507862 hasConceptScore W2979507862C95623464 @default.
- W2979507862 hasFunder F4320335254 @default.
- W2979507862 hasLocation W29795078621 @default.
- W2979507862 hasLocation W29795078622 @default.
- W2979507862 hasLocation W29795078623 @default.
- W2979507862 hasLocation W29795078624 @default.
- W2979507862 hasOpenAccess W2979507862 @default.
- W2979507862 hasPrimaryLocation W29795078621 @default.
- W2979507862 hasRelatedWork W2059299633 @default.
- W2979507862 hasRelatedWork W2254811285 @default.
- W2979507862 hasRelatedWork W2313168606 @default.
- W2979507862 hasRelatedWork W2732542196 @default.
- W2979507862 hasRelatedWork W2907228390 @default.
- W2979507862 hasRelatedWork W2936488316 @default.
- W2979507862 hasRelatedWork W2940977206 @default.
- W2979507862 hasRelatedWork W2995914718 @default.
- W2979507862 hasRelatedWork W4210770212 @default.