Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979517144> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2979517144 abstract "Quantization for deep neural networks have afforded models for edge devices that use less on-board memory and enable efficient low-power inference. In this paper, we present a comparison of model-parameter driven quantization approaches that can achieve as low as 3-bit precision without affecting accuracy. The post-training quantization approaches are data-free, and the resulting weight values are closely tied to the dataset distribution on which the model has converged to optimality. We show quantization results for a number of state-of-art deep neural networks (DNN) using large dataset like ImageNet. To better analyze quantization results, we describe the overall range and local sparsity of values afforded through various quantization schemes. We show the methods to lower bit-precision beyond quantization limits with object class clustering." @default.
- W2979517144 created "2019-10-18" @default.
- W2979517144 creator A5004565086 @default.
- W2979517144 creator A5020313454 @default.
- W2979517144 creator A5021356938 @default.
- W2979517144 date "2019-10-07" @default.
- W2979517144 modified "2023-09-26" @default.
- W2979517144 title "Bit Efficient Quantization for Deep Neural Networks" @default.
- W2979517144 cites W2158899491 @default.
- W2979517144 cites W2163605009 @default.
- W2979517144 cites W2300242332 @default.
- W2979517144 cites W2405920868 @default.
- W2979517144 cites W2469490737 @default.
- W2979517144 cites W2593245696 @default.
- W2979517144 cites W2748902989 @default.
- W2979517144 cites W2809624076 @default.
- W2979517144 cites W2886014761 @default.
- W2979517144 cites W2890984855 @default.
- W2979517144 cites W2901643390 @default.
- W2979517144 cites W2963114950 @default.
- W2979517144 cites W2963122961 @default.
- W2979517144 cites W2963374099 @default.
- W2979517144 cites W2963674932 @default.
- W2979517144 cites W2964297791 @default.
- W2979517144 cites W2981751377 @default.
- W2979517144 cites W3147600416 @default.
- W2979517144 cites W3023071679 @default.
- W2979517144 doi "https://doi.org/10.48550/arxiv.1910.04877" @default.
- W2979517144 hasPublicationYear "2019" @default.
- W2979517144 type Work @default.
- W2979517144 sameAs 2979517144 @default.
- W2979517144 citedByCount "9" @default.
- W2979517144 countsByYear W29795171442019 @default.
- W2979517144 countsByYear W29795171442020 @default.
- W2979517144 countsByYear W29795171442021 @default.
- W2979517144 countsByYear W29795171442022 @default.
- W2979517144 crossrefType "posted-content" @default.
- W2979517144 hasAuthorship W2979517144A5004565086 @default.
- W2979517144 hasAuthorship W2979517144A5020313454 @default.
- W2979517144 hasAuthorship W2979517144A5021356938 @default.
- W2979517144 hasBestOaLocation W29795171441 @default.
- W2979517144 hasConcept C108583219 @default.
- W2979517144 hasConcept C111919701 @default.
- W2979517144 hasConcept C11413529 @default.
- W2979517144 hasConcept C138236772 @default.
- W2979517144 hasConcept C154945302 @default.
- W2979517144 hasConcept C2776214188 @default.
- W2979517144 hasConcept C28855332 @default.
- W2979517144 hasConcept C2984842247 @default.
- W2979517144 hasConcept C41008148 @default.
- W2979517144 hasConcept C50644808 @default.
- W2979517144 hasConcept C73555534 @default.
- W2979517144 hasConcept C79974875 @default.
- W2979517144 hasConceptScore W2979517144C108583219 @default.
- W2979517144 hasConceptScore W2979517144C111919701 @default.
- W2979517144 hasConceptScore W2979517144C11413529 @default.
- W2979517144 hasConceptScore W2979517144C138236772 @default.
- W2979517144 hasConceptScore W2979517144C154945302 @default.
- W2979517144 hasConceptScore W2979517144C2776214188 @default.
- W2979517144 hasConceptScore W2979517144C28855332 @default.
- W2979517144 hasConceptScore W2979517144C2984842247 @default.
- W2979517144 hasConceptScore W2979517144C41008148 @default.
- W2979517144 hasConceptScore W2979517144C50644808 @default.
- W2979517144 hasConceptScore W2979517144C73555534 @default.
- W2979517144 hasConceptScore W2979517144C79974875 @default.
- W2979517144 hasLocation W29795171441 @default.
- W2979517144 hasOpenAccess W2979517144 @default.
- W2979517144 hasPrimaryLocation W29795171441 @default.
- W2979517144 hasRelatedWork W127943105 @default.
- W2979517144 hasRelatedWork W1489554298 @default.
- W2979517144 hasRelatedWork W1971930133 @default.
- W2979517144 hasRelatedWork W2030893859 @default.
- W2979517144 hasRelatedWork W2274313244 @default.
- W2979517144 hasRelatedWork W2556145167 @default.
- W2979517144 hasRelatedWork W2608884419 @default.
- W2979517144 hasRelatedWork W2949701228 @default.
- W2979517144 hasRelatedWork W2979517144 @default.
- W2979517144 hasRelatedWork W3176483701 @default.
- W2979517144 isParatext "false" @default.
- W2979517144 isRetracted "false" @default.
- W2979517144 magId "2979517144" @default.
- W2979517144 workType "article" @default.