Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979517222> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2979517222 abstract "In this paper, we extracted hand crafted features from the ECG signals and evaluated the performance of different combination of features for sleep apnoea detection. We calculated the ECG derived respiratory (EDR) signal using three methods (QRS area, amplitude demodulation and fast PCA methods) and then calculated the cardiopulmonary coupling (CPC) spectrum using each EDR method. We then extracted features from the CPC spectrums and the time and frequency representations of the heart rate variability (HRV) and EDR signals Then, we compared the performance results of different combinations of the features used for automated sleep apnoea detection. We also applied a temporal optimisation method by averaging the features of every three adjacent epochs. Two classifiers were used to detect sleep apnoea: the extreme learning machine (ELM), and linear discriminant analysis. The features were evaluated on the MIT PhysioNet Apnea-ECG database. Apnoea detection was evaluated with leave-one-record-out cross-validation. The PCA CPC features obtained the highest accuracy of 86.5% and AUC of 0.94 using LDA classifier. The performance results of the combined features (of PCA method) obtained the same results. We conclude that for this study, the CPC features using fast PCA method are our best feature set for sleep apnoea detection." @default.
- W2979517222 created "2019-10-18" @default.
- W2979517222 creator A5041643564 @default.
- W2979517222 creator A5078054483 @default.
- W2979517222 date "2019-07-01" @default.
- W2979517222 modified "2023-09-25" @default.
- W2979517222 title "Comparing Different Methods of Hand-crafted HRV, EDR and CPC Features for Sleep Apnoea Detection" @default.
- W2979517222 cites W1495579528 @default.
- W2979517222 cites W1554944419 @default.
- W2979517222 cites W1979937437 @default.
- W2979517222 cites W1990729619 @default.
- W2979517222 cites W2021717932 @default.
- W2979517222 cites W2028850797 @default.
- W2979517222 cites W2106336403 @default.
- W2979517222 cites W2114299092 @default.
- W2979517222 cites W2121209008 @default.
- W2979517222 cites W2123700077 @default.
- W2979517222 cites W2123740758 @default.
- W2979517222 cites W2128261760 @default.
- W2979517222 cites W2138061685 @default.
- W2979517222 cites W2140095548 @default.
- W2979517222 cites W2150475312 @default.
- W2979517222 cites W2151317568 @default.
- W2979517222 cites W2162800060 @default.
- W2979517222 cites W2164179736 @default.
- W2979517222 cites W2174283729 @default.
- W2979517222 cites W2296453446 @default.
- W2979517222 cites W2538428457 @default.
- W2979517222 cites W2593259848 @default.
- W2979517222 cites W275101382 @default.
- W2979517222 cites W2899166476 @default.
- W2979517222 cites W2911161535 @default.
- W2979517222 doi "https://doi.org/10.1109/embc.2019.8856779" @default.
- W2979517222 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31946718" @default.
- W2979517222 hasPublicationYear "2019" @default.
- W2979517222 type Work @default.
- W2979517222 sameAs 2979517222 @default.
- W2979517222 citedByCount "0" @default.
- W2979517222 crossrefType "proceedings-article" @default.
- W2979517222 hasAuthorship W2979517222A5041643564 @default.
- W2979517222 hasAuthorship W2979517222A5078054483 @default.
- W2979517222 hasConcept C111773187 @default.
- W2979517222 hasConcept C138885662 @default.
- W2979517222 hasConcept C153180895 @default.
- W2979517222 hasConcept C154945302 @default.
- W2979517222 hasConcept C164705383 @default.
- W2979517222 hasConcept C27438332 @default.
- W2979517222 hasConcept C2776401178 @default.
- W2979517222 hasConcept C2777935920 @default.
- W2979517222 hasConcept C28490314 @default.
- W2979517222 hasConcept C41008148 @default.
- W2979517222 hasConcept C41895202 @default.
- W2979517222 hasConcept C52622490 @default.
- W2979517222 hasConcept C69738355 @default.
- W2979517222 hasConcept C71924100 @default.
- W2979517222 hasConceptScore W2979517222C111773187 @default.
- W2979517222 hasConceptScore W2979517222C138885662 @default.
- W2979517222 hasConceptScore W2979517222C153180895 @default.
- W2979517222 hasConceptScore W2979517222C154945302 @default.
- W2979517222 hasConceptScore W2979517222C164705383 @default.
- W2979517222 hasConceptScore W2979517222C27438332 @default.
- W2979517222 hasConceptScore W2979517222C2776401178 @default.
- W2979517222 hasConceptScore W2979517222C2777935920 @default.
- W2979517222 hasConceptScore W2979517222C28490314 @default.
- W2979517222 hasConceptScore W2979517222C41008148 @default.
- W2979517222 hasConceptScore W2979517222C41895202 @default.
- W2979517222 hasConceptScore W2979517222C52622490 @default.
- W2979517222 hasConceptScore W2979517222C69738355 @default.
- W2979517222 hasConceptScore W2979517222C71924100 @default.
- W2979517222 hasLocation W29795172221 @default.
- W2979517222 hasLocation W29795172222 @default.
- W2979517222 hasOpenAccess W2979517222 @default.
- W2979517222 hasPrimaryLocation W29795172221 @default.
- W2979517222 hasRelatedWork W1761337995 @default.
- W2979517222 hasRelatedWork W2017960228 @default.
- W2979517222 hasRelatedWork W2057748761 @default.
- W2979517222 hasRelatedWork W2087666549 @default.
- W2979517222 hasRelatedWork W2143136277 @default.
- W2979517222 hasRelatedWork W2188753808 @default.
- W2979517222 hasRelatedWork W2355203151 @default.
- W2979517222 hasRelatedWork W2371006619 @default.
- W2979517222 hasRelatedWork W2380927352 @default.
- W2979517222 hasRelatedWork W94476185 @default.
- W2979517222 isParatext "false" @default.
- W2979517222 isRetracted "false" @default.
- W2979517222 magId "2979517222" @default.
- W2979517222 workType "article" @default.