Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979543786> ?p ?o ?g. }
- W2979543786 abstract "We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a large synthetic distortion dataset to predict the displacement field between distorted images and corrected images. A model fitting method uses the CNN output to estimate the distortion parameters, achieving a more accurate prediction. The final corrected image is generated based on the predicted flow using an efficient, high-quality resampling method. Experimental results demonstrate that our algorithm outperforms traditional correction methods, and allows for interesting applications such as distortion transfer, distortion exaggeration, and co-occurring distortion correction." @default.
- W2979543786 created "2019-10-18" @default.
- W2979543786 creator A5013972536 @default.
- W2979543786 creator A5066694652 @default.
- W2979543786 creator A5082020327 @default.
- W2979543786 creator A5083785775 @default.
- W2979543786 date "2019-06-01" @default.
- W2979543786 modified "2023-10-01" @default.
- W2979543786 title "Blind Geometric Distortion Correction on Images Through Deep Learning" @default.
- W2979543786 cites W1017437166 @default.
- W2979543786 cites W1521461170 @default.
- W2979543786 cites W1652188528 @default.
- W2979543786 cites W1745334888 @default.
- W2979543786 cites W1903029394 @default.
- W2979543786 cites W1930563420 @default.
- W2979543786 cites W1966833203 @default.
- W2979543786 cites W1969332260 @default.
- W2979543786 cites W1988918871 @default.
- W2979543786 cites W2021581587 @default.
- W2979543786 cites W2021670031 @default.
- W2979543786 cites W2030058567 @default.
- W2979543786 cites W2032704023 @default.
- W2979543786 cites W2033603589 @default.
- W2979543786 cites W2035227748 @default.
- W2979543786 cites W2069609746 @default.
- W2979543786 cites W2070694296 @default.
- W2979543786 cites W2075544016 @default.
- W2979543786 cites W2095614026 @default.
- W2979543786 cites W2103569660 @default.
- W2979543786 cites W2103951758 @default.
- W2979543786 cites W2109226337 @default.
- W2979543786 cites W2112731915 @default.
- W2979543786 cites W2123977633 @default.
- W2979543786 cites W2124535811 @default.
- W2979543786 cites W2131394160 @default.
- W2979543786 cites W2150207818 @default.
- W2979543786 cites W2160072137 @default.
- W2979543786 cites W2194775991 @default.
- W2979543786 cites W2348809881 @default.
- W2979543786 cites W2412782625 @default.
- W2979543786 cites W2620715523 @default.
- W2979543786 cites W2963073614 @default.
- W2979543786 cites W2963404738 @default.
- W2979543786 cites W4250286211 @default.
- W2979543786 doi "https://doi.org/10.1109/cvpr.2019.00499" @default.
- W2979543786 hasPublicationYear "2019" @default.
- W2979543786 type Work @default.
- W2979543786 sameAs 2979543786 @default.
- W2979543786 citedByCount "41" @default.
- W2979543786 countsByYear W29795437862019 @default.
- W2979543786 countsByYear W29795437862020 @default.
- W2979543786 countsByYear W29795437862021 @default.
- W2979543786 countsByYear W29795437862022 @default.
- W2979543786 countsByYear W29795437862023 @default.
- W2979543786 crossrefType "proceedings-article" @default.
- W2979543786 hasAuthorship W2979543786A5013972536 @default.
- W2979543786 hasAuthorship W2979543786A5066694652 @default.
- W2979543786 hasAuthorship W2979543786A5082020327 @default.
- W2979543786 hasAuthorship W2979543786A5083785775 @default.
- W2979543786 hasBestOaLocation W29795437862 @default.
- W2979543786 hasConcept C107551265 @default.
- W2979543786 hasConcept C11413529 @default.
- W2979543786 hasConcept C126780896 @default.
- W2979543786 hasConcept C150921843 @default.
- W2979543786 hasConcept C153180895 @default.
- W2979543786 hasConcept C154945302 @default.
- W2979543786 hasConcept C15744967 @default.
- W2979543786 hasConcept C194257627 @default.
- W2979543786 hasConcept C2776257435 @default.
- W2979543786 hasConcept C31258907 @default.
- W2979543786 hasConcept C31972630 @default.
- W2979543786 hasConcept C41008148 @default.
- W2979543786 hasConcept C542102704 @default.
- W2979543786 hasConcept C81363708 @default.
- W2979543786 hasConceptScore W2979543786C107551265 @default.
- W2979543786 hasConceptScore W2979543786C11413529 @default.
- W2979543786 hasConceptScore W2979543786C126780896 @default.
- W2979543786 hasConceptScore W2979543786C150921843 @default.
- W2979543786 hasConceptScore W2979543786C153180895 @default.
- W2979543786 hasConceptScore W2979543786C154945302 @default.
- W2979543786 hasConceptScore W2979543786C15744967 @default.
- W2979543786 hasConceptScore W2979543786C194257627 @default.
- W2979543786 hasConceptScore W2979543786C2776257435 @default.
- W2979543786 hasConceptScore W2979543786C31258907 @default.
- W2979543786 hasConceptScore W2979543786C31972630 @default.
- W2979543786 hasConceptScore W2979543786C41008148 @default.
- W2979543786 hasConceptScore W2979543786C542102704 @default.
- W2979543786 hasConceptScore W2979543786C81363708 @default.
- W2979543786 hasLocation W29795437861 @default.
- W2979543786 hasLocation W29795437862 @default.
- W2979543786 hasOpenAccess W2979543786 @default.
- W2979543786 hasPrimaryLocation W29795437861 @default.
- W2979543786 hasRelatedWork W10405577 @default.
- W2979543786 hasRelatedWork W11882198 @default.
- W2979543786 hasRelatedWork W11956422 @default.
- W2979543786 hasRelatedWork W11996847 @default.
- W2979543786 hasRelatedWork W3424592 @default.
- W2979543786 hasRelatedWork W4097755 @default.
- W2979543786 hasRelatedWork W4134953 @default.
- W2979543786 hasRelatedWork W4136762 @default.