Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979578032> ?p ?o ?g. }
- W2979578032 endingPage "102592" @default.
- W2979578032 startingPage "102592" @default.
- W2979578032 abstract "Detecting overlapping blob objects is a classical, yet challenging problem in the image processing field. In this paper, we propose an automated blob detection method that is able to tackle both isolated and partially overlapping blob objects. Firstly, we present a multiscale normalization method for Laplacian of Gaussian kernels, thus proposing iterative Laplacian of Gaussian filtering to attenuate the overlapping regions of the adjacent blobs while retaining the isolated blobs. Secondly, we investigate the potential of unilateral second-order Gaussian kernels for separating overlapping blobs, and explain how to set the scales of the kernels appropriately. Eventually, the blob detection result can be easily obtained by a thresholding procedure. We have applied the proposed method to fluorescence microscopy cell images and electron micrography nanoparticle images. The experimental results demonstrate that the proposed method outperforms the competing methods including state-of-the-art methods for dealing with partially overlapping blob objects." @default.
- W2979578032 created "2019-10-18" @default.
- W2979578032 creator A5012437460 @default.
- W2979578032 creator A5032988165 @default.
- W2979578032 creator A5056125713 @default.
- W2979578032 date "2020-01-01" @default.
- W2979578032 modified "2023-09-24" @default.
- W2979578032 title "Automated blob detection using iterative Laplacian of Gaussian filtering and unilateral second-order Gaussian kernels" @default.
- W2979578032 cites W1480020587 @default.
- W2979578032 cites W1497305825 @default.
- W2979578032 cites W1497467118 @default.
- W2979578032 cites W1939349075 @default.
- W2979578032 cites W1966394605 @default.
- W2979578032 cites W1966415233 @default.
- W2979578032 cites W1980073884 @default.
- W2979578032 cites W2003370853 @default.
- W2979578032 cites W2008633284 @default.
- W2979578032 cites W2012231760 @default.
- W2979578032 cites W2022735534 @default.
- W2979578032 cites W2044221450 @default.
- W2979578032 cites W2056834257 @default.
- W2979578032 cites W2059736916 @default.
- W2979578032 cites W2074738290 @default.
- W2979578032 cites W2082907229 @default.
- W2979578032 cites W2108149355 @default.
- W2979578032 cites W2109200236 @default.
- W2979578032 cites W2110158442 @default.
- W2979578032 cites W2117108042 @default.
- W2979578032 cites W2133059825 @default.
- W2979578032 cites W2133147610 @default.
- W2979578032 cites W2146162420 @default.
- W2979578032 cites W2149251234 @default.
- W2979578032 cites W2151538727 @default.
- W2979578032 cites W2157840858 @default.
- W2979578032 cites W2162819370 @default.
- W2979578032 cites W2167435976 @default.
- W2979578032 cites W2168237413 @default.
- W2979578032 cites W2210029275 @default.
- W2979578032 cites W2344654247 @default.
- W2979578032 cites W2523306698 @default.
- W2979578032 cites W2795155475 @default.
- W2979578032 cites W2886468927 @default.
- W2979578032 cites W2917173976 @default.
- W2979578032 cites W2948820902 @default.
- W2979578032 cites W2949066922 @default.
- W2979578032 cites W3039655948 @default.
- W2979578032 cites W4245193022 @default.
- W2979578032 doi "https://doi.org/10.1016/j.dsp.2019.102592" @default.
- W2979578032 hasPublicationYear "2020" @default.
- W2979578032 type Work @default.
- W2979578032 sameAs 2979578032 @default.
- W2979578032 citedByCount "27" @default.
- W2979578032 countsByYear W29795780322020 @default.
- W2979578032 countsByYear W29795780322021 @default.
- W2979578032 countsByYear W29795780322022 @default.
- W2979578032 countsByYear W29795780322023 @default.
- W2979578032 crossrefType "journal-article" @default.
- W2979578032 hasAuthorship W2979578032A5012437460 @default.
- W2979578032 hasAuthorship W2979578032A5032988165 @default.
- W2979578032 hasAuthorship W2979578032A5056125713 @default.
- W2979578032 hasConcept C11413529 @default.
- W2979578032 hasConcept C115178988 @default.
- W2979578032 hasConcept C115961682 @default.
- W2979578032 hasConcept C121332964 @default.
- W2979578032 hasConcept C134306372 @default.
- W2979578032 hasConcept C136886441 @default.
- W2979578032 hasConcept C144024400 @default.
- W2979578032 hasConcept C153180895 @default.
- W2979578032 hasConcept C154945302 @default.
- W2979578032 hasConcept C163716315 @default.
- W2979578032 hasConcept C165700671 @default.
- W2979578032 hasConcept C191178318 @default.
- W2979578032 hasConcept C19165224 @default.
- W2979578032 hasConcept C193536780 @default.
- W2979578032 hasConcept C29168087 @default.
- W2979578032 hasConcept C31972630 @default.
- W2979578032 hasConcept C33923547 @default.
- W2979578032 hasConcept C41008148 @default.
- W2979578032 hasConcept C62520636 @default.
- W2979578032 hasConcept C9417928 @default.
- W2979578032 hasConceptScore W2979578032C11413529 @default.
- W2979578032 hasConceptScore W2979578032C115178988 @default.
- W2979578032 hasConceptScore W2979578032C115961682 @default.
- W2979578032 hasConceptScore W2979578032C121332964 @default.
- W2979578032 hasConceptScore W2979578032C134306372 @default.
- W2979578032 hasConceptScore W2979578032C136886441 @default.
- W2979578032 hasConceptScore W2979578032C144024400 @default.
- W2979578032 hasConceptScore W2979578032C153180895 @default.
- W2979578032 hasConceptScore W2979578032C154945302 @default.
- W2979578032 hasConceptScore W2979578032C163716315 @default.
- W2979578032 hasConceptScore W2979578032C165700671 @default.
- W2979578032 hasConceptScore W2979578032C191178318 @default.
- W2979578032 hasConceptScore W2979578032C19165224 @default.
- W2979578032 hasConceptScore W2979578032C193536780 @default.
- W2979578032 hasConceptScore W2979578032C29168087 @default.
- W2979578032 hasConceptScore W2979578032C31972630 @default.
- W2979578032 hasConceptScore W2979578032C33923547 @default.
- W2979578032 hasConceptScore W2979578032C41008148 @default.