Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979580092> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2979580092 abstract "Automatic classification of abnormal beats in ECG signals is crucial for monitoring cardiac conditions and the performance of the classification will improve the success rate of the treatment. However, under certain circumstances, traditional classifiers cannot be adapted well to the variation of ECG morphologies or variation of different patients due to fixed hand-crafted features selection. Additionally, existing deep learning related solutions reach their limitation because they fail to use the beat-to-beat information together with single-beat morphologies. This paper applies a novel solution which converts one-dimensional ECG signal into spectro-temporal images and use multiple dense convolutional neural network to capture both beat-to-beat and single-beat information for analysis. The results of simulation on the MIT-BIH arrhythmias database demonstrate the effectiveness of the proposed methodology by showing an outstanding detection performance compared to other existing methods." @default.
- W2979580092 created "2019-10-18" @default.
- W2979580092 creator A5013496956 @default.
- W2979580092 creator A5055885921 @default.
- W2979580092 creator A5088302108 @default.
- W2979580092 creator A5089116198 @default.
- W2979580092 date "2019-07-01" @default.
- W2979580092 modified "2023-09-25" @default.
- W2979580092 title "Spectro-Temporal Feature Based Multi-Channel Convolutional Neural Network for ECG Beat Classification" @default.
- W2979580092 cites W2047187509 @default.
- W2979580092 cites W2050259033 @default.
- W2979580092 cites W2056523469 @default.
- W2979580092 cites W2063923412 @default.
- W2979580092 cites W2194775991 @default.
- W2979580092 cites W2291961022 @default.
- W2979580092 cites W3098026853 @default.
- W2979580092 doi "https://doi.org/10.1109/embc.2019.8857554" @default.
- W2979580092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31947133" @default.
- W2979580092 hasPublicationYear "2019" @default.
- W2979580092 type Work @default.
- W2979580092 sameAs 2979580092 @default.
- W2979580092 citedByCount "12" @default.
- W2979580092 countsByYear W29795800922020 @default.
- W2979580092 countsByYear W29795800922021 @default.
- W2979580092 countsByYear W29795800922022 @default.
- W2979580092 countsByYear W29795800922023 @default.
- W2979580092 crossrefType "proceedings-article" @default.
- W2979580092 hasAuthorship W2979580092A5013496956 @default.
- W2979580092 hasAuthorship W2979580092A5055885921 @default.
- W2979580092 hasAuthorship W2979580092A5088302108 @default.
- W2979580092 hasAuthorship W2979580092A5089116198 @default.
- W2979580092 hasConcept C121332964 @default.
- W2979580092 hasConcept C126322002 @default.
- W2979580092 hasConcept C148483581 @default.
- W2979580092 hasConcept C153180895 @default.
- W2979580092 hasConcept C154945302 @default.
- W2979580092 hasConcept C189809214 @default.
- W2979580092 hasConcept C24890656 @default.
- W2979580092 hasConcept C28490314 @default.
- W2979580092 hasConcept C2982892191 @default.
- W2979580092 hasConcept C41008148 @default.
- W2979580092 hasConcept C50644808 @default.
- W2979580092 hasConcept C52622490 @default.
- W2979580092 hasConcept C71924100 @default.
- W2979580092 hasConcept C81363708 @default.
- W2979580092 hasConceptScore W2979580092C121332964 @default.
- W2979580092 hasConceptScore W2979580092C126322002 @default.
- W2979580092 hasConceptScore W2979580092C148483581 @default.
- W2979580092 hasConceptScore W2979580092C153180895 @default.
- W2979580092 hasConceptScore W2979580092C154945302 @default.
- W2979580092 hasConceptScore W2979580092C189809214 @default.
- W2979580092 hasConceptScore W2979580092C24890656 @default.
- W2979580092 hasConceptScore W2979580092C28490314 @default.
- W2979580092 hasConceptScore W2979580092C2982892191 @default.
- W2979580092 hasConceptScore W2979580092C41008148 @default.
- W2979580092 hasConceptScore W2979580092C50644808 @default.
- W2979580092 hasConceptScore W2979580092C52622490 @default.
- W2979580092 hasConceptScore W2979580092C71924100 @default.
- W2979580092 hasConceptScore W2979580092C81363708 @default.
- W2979580092 hasLocation W29795800921 @default.
- W2979580092 hasLocation W29795800922 @default.
- W2979580092 hasOpenAccess W2979580092 @default.
- W2979580092 hasPrimaryLocation W29795800921 @default.
- W2979580092 hasRelatedWork W2059299633 @default.
- W2979580092 hasRelatedWork W2732542196 @default.
- W2979580092 hasRelatedWork W2767651786 @default.
- W2979580092 hasRelatedWork W2940977206 @default.
- W2979580092 hasRelatedWork W2969680539 @default.
- W2979580092 hasRelatedWork W2977314777 @default.
- W2979580092 hasRelatedWork W2995914718 @default.
- W2979580092 hasRelatedWork W3156786002 @default.
- W2979580092 hasRelatedWork W4307883119 @default.
- W2979580092 hasRelatedWork W2345184372 @default.
- W2979580092 isParatext "false" @default.
- W2979580092 isRetracted "false" @default.
- W2979580092 magId "2979580092" @default.
- W2979580092 workType "article" @default.