Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979589943> ?p ?o ?g. }
- W2979589943 endingPage "146330" @default.
- W2979589943 startingPage "146322" @default.
- W2979589943 abstract "Cloud computing has been widely applied in numerous applications for storage and data analytics tasks. However, cloud servers engaged through a third party cannot be fully trusted by multiple data users. Thus, security and privacy concerns become the main obstructions to use machine learning services, especially with multiple data providers. Additionally, some recent outsourcing machine learning schemes have been proposed in order to preserve the privacy of data providers. Yet, these schemes cannot satisfy the property of public verifiability. In this paper, we present an efficient privacy-preserving machine learning scheme for multiple data providers. The proposed scheme allows all participants in the system model to publicly verify the correctness of the encrypted data. Furthermore, a unidirectional proxy re-encryption (UPRE) scheme is employed to reduce the high computational costs along with multiple data providers. The cloud server embeds noise in the encrypted data, allowing the analytics to apply machine learning techniques and preserve the privacy of data providers’ information. The results and experiments tests demonstrate that the proposed scheme has the ability to reduce computational costs and communication overheads." @default.
- W2979589943 created "2019-10-18" @default.
- W2979589943 creator A5053966955 @default.
- W2979589943 creator A5055842190 @default.
- W2979589943 creator A5077748207 @default.
- W2979589943 creator A5086272097 @default.
- W2979589943 date "2019-01-01" @default.
- W2979589943 modified "2023-10-13" @default.
- W2979589943 title "An Efficient Outsourced Privacy Preserving Machine Learning Scheme With Public Verifiability" @default.
- W2979589943 cites W1493407996 @default.
- W2979589943 cites W1518622464 @default.
- W2979589943 cites W1659280461 @default.
- W2979589943 cites W1665450113 @default.
- W2979589943 cites W1700434006 @default.
- W2979589943 cites W1890272145 @default.
- W2979589943 cites W1989815317 @default.
- W2979589943 cites W2006484959 @default.
- W2979589943 cites W2096241946 @default.
- W2979589943 cites W2096544401 @default.
- W2979589943 cites W2110987245 @default.
- W2979589943 cites W2114296561 @default.
- W2979589943 cites W2132172731 @default.
- W2979589943 cites W2136394324 @default.
- W2979589943 cites W2139910984 @default.
- W2979589943 cites W2164101323 @default.
- W2979589943 cites W2233194383 @default.
- W2979589943 cites W2529689813 @default.
- W2979589943 cites W2532401748 @default.
- W2979589943 cites W2569717082 @default.
- W2979589943 cites W2597998853 @default.
- W2979589943 cites W2604462068 @default.
- W2979589943 cites W2610479618 @default.
- W2979589943 cites W2681571577 @default.
- W2979589943 cites W2771386056 @default.
- W2979589943 cites W2773943202 @default.
- W2979589943 cites W2786793274 @default.
- W2979589943 cites W2789264846 @default.
- W2979589943 cites W2790975052 @default.
- W2979589943 cites W2791289577 @default.
- W2979589943 cites W2793196814 @default.
- W2979589943 cites W2794501668 @default.
- W2979589943 cites W2803199352 @default.
- W2979589943 cites W2804026184 @default.
- W2979589943 cites W2910387327 @default.
- W2979589943 cites W2915778496 @default.
- W2979589943 cites W2928294389 @default.
- W2979589943 cites W2944216014 @default.
- W2979589943 cites W2947261612 @default.
- W2979589943 cites W4205228770 @default.
- W2979589943 cites W4248649186 @default.
- W2979589943 cites W4251546625 @default.
- W2979589943 doi "https://doi.org/10.1109/access.2019.2946202" @default.
- W2979589943 hasPublicationYear "2019" @default.
- W2979589943 type Work @default.
- W2979589943 sameAs 2979589943 @default.
- W2979589943 citedByCount "33" @default.
- W2979589943 countsByYear W29795899432020 @default.
- W2979589943 countsByYear W29795899432021 @default.
- W2979589943 countsByYear W29795899432022 @default.
- W2979589943 countsByYear W29795899432023 @default.
- W2979589943 crossrefType "journal-article" @default.
- W2979589943 hasAuthorship W2979589943A5053966955 @default.
- W2979589943 hasAuthorship W2979589943A5055842190 @default.
- W2979589943 hasAuthorship W2979589943A5077748207 @default.
- W2979589943 hasAuthorship W2979589943A5086272097 @default.
- W2979589943 hasBestOaLocation W29795899431 @default.
- W2979589943 hasConcept C111919701 @default.
- W2979589943 hasConcept C11413529 @default.
- W2979589943 hasConcept C123201435 @default.
- W2979589943 hasConcept C134306372 @default.
- W2979589943 hasConcept C148730421 @default.
- W2979589943 hasConcept C158338273 @default.
- W2979589943 hasConcept C17744445 @default.
- W2979589943 hasConcept C178489894 @default.
- W2979589943 hasConcept C199539241 @default.
- W2979589943 hasConcept C31258907 @default.
- W2979589943 hasConcept C33923547 @default.
- W2979589943 hasConcept C38652104 @default.
- W2979589943 hasConcept C41008148 @default.
- W2979589943 hasConcept C46934059 @default.
- W2979589943 hasConcept C55439883 @default.
- W2979589943 hasConcept C77618280 @default.
- W2979589943 hasConcept C79974875 @default.
- W2979589943 hasConcept C93996380 @default.
- W2979589943 hasConceptScore W2979589943C111919701 @default.
- W2979589943 hasConceptScore W2979589943C11413529 @default.
- W2979589943 hasConceptScore W2979589943C123201435 @default.
- W2979589943 hasConceptScore W2979589943C134306372 @default.
- W2979589943 hasConceptScore W2979589943C148730421 @default.
- W2979589943 hasConceptScore W2979589943C158338273 @default.
- W2979589943 hasConceptScore W2979589943C17744445 @default.
- W2979589943 hasConceptScore W2979589943C178489894 @default.
- W2979589943 hasConceptScore W2979589943C199539241 @default.
- W2979589943 hasConceptScore W2979589943C31258907 @default.
- W2979589943 hasConceptScore W2979589943C33923547 @default.
- W2979589943 hasConceptScore W2979589943C38652104 @default.
- W2979589943 hasConceptScore W2979589943C41008148 @default.
- W2979589943 hasConceptScore W2979589943C46934059 @default.