Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979663333> ?p ?o ?g. }
- W2979663333 endingPage "1555" @default.
- W2979663333 startingPage "1545" @default.
- W2979663333 abstract "The development of computer networks today has increased rapidly. This can be seen based on the trend of computer users around the world, whereby they need to connect their computer to the Internet. This shows that the use of Internet networks is very important, whether for work purposes or access to social media accounts. However, in widely using this computer network, the privacy of computer users is in danger, especially for computer users who do not install security systems in their computer. This problem will allow hackers to hack and commit network attacks. This is very dangerous, especially for Internet users because hackers can steal confidential information such as bank login account or social media login account. The attacks that can be made include phishing attacks. The goal of this study is to review the types of phishing attacks and current methods used in preventing them. Based on the literature, the machine learning method is widely used to prevent phishing attacks. There are several algorithms that can be used in the machine learning method to prevent these attacks. This study focused on an algorithm that was thoroughly made and the methods in implementing this algorithm are discussed in detail." @default.
- W2979663333 created "2019-10-18" @default.
- W2979663333 creator A5003164724 @default.
- W2979663333 creator A5027073059 @default.
- W2979663333 creator A5051195629 @default.
- W2979663333 creator A5053568232 @default.
- W2979663333 creator A5059360335 @default.
- W2979663333 creator A5064913575 @default.
- W2979663333 date "2019-12-01" @default.
- W2979663333 modified "2023-10-18" @default.
- W2979663333 title "Review of the machine learning methods in the classification of phishing attack" @default.
- W2979663333 cites W1498672433 @default.
- W2979663333 cites W1514415280 @default.
- W2979663333 cites W1573999528 @default.
- W2979663333 cites W1965961515 @default.
- W2979663333 cites W2082674974 @default.
- W2979663333 cites W2088502410 @default.
- W2979663333 cites W2169281690 @default.
- W2979663333 cites W2169976806 @default.
- W2979663333 cites W2242179277 @default.
- W2979663333 cites W2252301886 @default.
- W2979663333 cites W2313904719 @default.
- W2979663333 cites W2341661152 @default.
- W2979663333 cites W2406182434 @default.
- W2979663333 cites W2513157222 @default.
- W2979663333 cites W2517427985 @default.
- W2979663333 cites W2521164685 @default.
- W2979663333 cites W2589780155 @default.
- W2979663333 cites W2601726217 @default.
- W2979663333 cites W2603834682 @default.
- W2979663333 cites W2746722496 @default.
- W2979663333 cites W2753690802 @default.
- W2979663333 cites W2757524840 @default.
- W2979663333 cites W2758128462 @default.
- W2979663333 cites W2760042694 @default.
- W2979663333 cites W2761096426 @default.
- W2979663333 cites W2763229270 @default.
- W2979663333 cites W2771831079 @default.
- W2979663333 cites W2780815814 @default.
- W2979663333 cites W2792419891 @default.
- W2979663333 cites W2800391419 @default.
- W2979663333 cites W2804836751 @default.
- W2979663333 cites W2809595040 @default.
- W2979663333 cites W2832405031 @default.
- W2979663333 cites W2886101238 @default.
- W2979663333 cites W2902033842 @default.
- W2979663333 cites W2907141522 @default.
- W2979663333 cites W2918921889 @default.
- W2979663333 cites W2760895777 @default.
- W2979663333 doi "https://doi.org/10.11591/eei.v8i4.1344" @default.
- W2979663333 hasPublicationYear "2019" @default.
- W2979663333 type Work @default.
- W2979663333 sameAs 2979663333 @default.
- W2979663333 citedByCount "6" @default.
- W2979663333 countsByYear W29796633332021 @default.
- W2979663333 countsByYear W29796633332022 @default.
- W2979663333 crossrefType "journal-article" @default.
- W2979663333 hasAuthorship W2979663333A5003164724 @default.
- W2979663333 hasAuthorship W2979663333A5027073059 @default.
- W2979663333 hasAuthorship W2979663333A5051195629 @default.
- W2979663333 hasAuthorship W2979663333A5053568232 @default.
- W2979663333 hasAuthorship W2979663333A5059360335 @default.
- W2979663333 hasAuthorship W2979663333A5064913575 @default.
- W2979663333 hasBestOaLocation W29796633331 @default.
- W2979663333 hasConcept C108827166 @default.
- W2979663333 hasConcept C110875604 @default.
- W2979663333 hasConcept C113324615 @default.
- W2979663333 hasConcept C136764020 @default.
- W2979663333 hasConcept C153180980 @default.
- W2979663333 hasConcept C182590292 @default.
- W2979663333 hasConcept C38652104 @default.
- W2979663333 hasConcept C41008148 @default.
- W2979663333 hasConcept C70118762 @default.
- W2979663333 hasConcept C71745522 @default.
- W2979663333 hasConcept C77088390 @default.
- W2979663333 hasConcept C83860907 @default.
- W2979663333 hasConcept C86844869 @default.
- W2979663333 hasConceptScore W2979663333C108827166 @default.
- W2979663333 hasConceptScore W2979663333C110875604 @default.
- W2979663333 hasConceptScore W2979663333C113324615 @default.
- W2979663333 hasConceptScore W2979663333C136764020 @default.
- W2979663333 hasConceptScore W2979663333C153180980 @default.
- W2979663333 hasConceptScore W2979663333C182590292 @default.
- W2979663333 hasConceptScore W2979663333C38652104 @default.
- W2979663333 hasConceptScore W2979663333C41008148 @default.
- W2979663333 hasConceptScore W2979663333C70118762 @default.
- W2979663333 hasConceptScore W2979663333C71745522 @default.
- W2979663333 hasConceptScore W2979663333C77088390 @default.
- W2979663333 hasConceptScore W2979663333C83860907 @default.
- W2979663333 hasConceptScore W2979663333C86844869 @default.
- W2979663333 hasIssue "4" @default.
- W2979663333 hasLocation W29796633331 @default.
- W2979663333 hasLocation W29796633332 @default.
- W2979663333 hasOpenAccess W2979663333 @default.
- W2979663333 hasPrimaryLocation W29796633331 @default.
- W2979663333 hasRelatedWork W2181649187 @default.
- W2979663333 hasRelatedWork W222254991 @default.
- W2979663333 hasRelatedWork W2360727103 @default.