Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979665776> ?p ?o ?g. }
- W2979665776 endingPage "3767" @default.
- W2979665776 startingPage "3733" @default.
- W2979665776 abstract "Although there has been an explosive rise in network data in a variety of disciplines, there is very limited development of regression modeling approaches based on high-dimensional networks. The scarce literature in this area typically assume linear relationships between the outcome and the high-dimensional network edges that results in an inflated model plagued by the curse of dimensionality and these models are unable to accommodate non-linear relationships or higher order interactions. In order to overcome these limitations, we develop a novel two-stage Bayesian non-parametric regression modeling framework using high-dimensional networks as covariates, which first finds a lower dimensional node-specific representation for the networks, and then embeds these representations in a flexible Gaussian process regression framework along with supplemental covariates for modeling the continuous outcome variable. Moving from edge-level analysis to node-level model allows us to scale up to high-dimensional networks, and enables node selection via an extension of the Gaussian process framework that involves spike-and-slab priors on the lengthscale parameters. Extensive simulations show a distinct advantage of the proposed approach in terms of prediction, coverage, and node selection. The proposed model achieves considerable gains when predicting posttraumatic stress disorder (PTSD) resilience based on brain networks in our motivating neuroimaging applications, and also identifies important brain regions associated with PTSD. In contrast, existing non-linear approaches that employ the full-edge set or those that use other dimension reduction techniques on the network are not equipped for node selection and results in poor prediction and characterization of predictive uncertainty, while linear approaches using the edge-level features are overly inflated and typically result in poor performance." @default.
- W2979665776 created "2019-10-18" @default.
- W2979665776 creator A5026382408 @default.
- W2979665776 creator A5083350924 @default.
- W2979665776 creator A5087143400 @default.
- W2979665776 date "2022-06-02" @default.
- W2979665776 modified "2023-09-23" @default.
- W2979665776 title "Semi-parametric Bayes regression with network-valued covariates" @default.
- W2979665776 cites W1671274119 @default.
- W2979665776 cites W1975052289 @default.
- W2979665776 cites W1979426401 @default.
- W2979665776 cites W1987703400 @default.
- W2979665776 cites W1999653836 @default.
- W2979665776 cites W2001141328 @default.
- W2979665776 cites W2013016035 @default.
- W2979665776 cites W2024081693 @default.
- W2979665776 cites W2024165298 @default.
- W2979665776 cites W2062428068 @default.
- W2979665776 cites W2063343885 @default.
- W2979665776 cites W2066459332 @default.
- W2979665776 cites W2089554624 @default.
- W2979665776 cites W2089572795 @default.
- W2979665776 cites W2097308346 @default.
- W2979665776 cites W2099878672 @default.
- W2979665776 cites W2103881507 @default.
- W2979665776 cites W2114169935 @default.
- W2979665776 cites W2118185372 @default.
- W2979665776 cites W2122825543 @default.
- W2979665776 cites W2123082179 @default.
- W2979665776 cites W2132555912 @default.
- W2979665776 cites W2143909130 @default.
- W2979665776 cites W2144799688 @default.
- W2979665776 cites W2152332814 @default.
- W2979665776 cites W2558460151 @default.
- W2979665776 cites W2621438471 @default.
- W2979665776 cites W2743013071 @default.
- W2979665776 cites W2877075979 @default.
- W2979665776 cites W2884781986 @default.
- W2979665776 cites W2888404621 @default.
- W2979665776 cites W2904693133 @default.
- W2979665776 cites W2952857756 @default.
- W2979665776 cites W2962875621 @default.
- W2979665776 cites W2962975498 @default.
- W2979665776 cites W2963218881 @default.
- W2979665776 cites W2966385502 @default.
- W2979665776 cites W2996451395 @default.
- W2979665776 cites W3031617338 @default.
- W2979665776 cites W3043202398 @default.
- W2979665776 cites W3100557905 @default.
- W2979665776 cites W3100858558 @default.
- W2979665776 cites W3103387329 @default.
- W2979665776 cites W3122858766 @default.
- W2979665776 cites W3157536593 @default.
- W2979665776 cites W4210257598 @default.
- W2979665776 cites W4232932184 @default.
- W2979665776 cites W4234698323 @default.
- W2979665776 cites W4294541781 @default.
- W2979665776 doi "https://doi.org/10.1007/s10994-022-06174-z" @default.
- W2979665776 hasPublicationYear "2022" @default.
- W2979665776 type Work @default.
- W2979665776 sameAs 2979665776 @default.
- W2979665776 citedByCount "0" @default.
- W2979665776 crossrefType "journal-article" @default.
- W2979665776 hasAuthorship W2979665776A5026382408 @default.
- W2979665776 hasAuthorship W2979665776A5083350924 @default.
- W2979665776 hasAuthorship W2979665776A5087143400 @default.
- W2979665776 hasBestOaLocation W29796657761 @default.
- W2979665776 hasConcept C105795698 @default.
- W2979665776 hasConcept C107673813 @default.
- W2979665776 hasConcept C119043178 @default.
- W2979665776 hasConcept C119857082 @default.
- W2979665776 hasConcept C124101348 @default.
- W2979665776 hasConcept C127413603 @default.
- W2979665776 hasConcept C154945302 @default.
- W2979665776 hasConcept C177769412 @default.
- W2979665776 hasConcept C33923547 @default.
- W2979665776 hasConcept C41008148 @default.
- W2979665776 hasConcept C62611344 @default.
- W2979665776 hasConcept C66938386 @default.
- W2979665776 hasConcept C70518039 @default.
- W2979665776 hasConcept C83546350 @default.
- W2979665776 hasConceptScore W2979665776C105795698 @default.
- W2979665776 hasConceptScore W2979665776C107673813 @default.
- W2979665776 hasConceptScore W2979665776C119043178 @default.
- W2979665776 hasConceptScore W2979665776C119857082 @default.
- W2979665776 hasConceptScore W2979665776C124101348 @default.
- W2979665776 hasConceptScore W2979665776C127413603 @default.
- W2979665776 hasConceptScore W2979665776C154945302 @default.
- W2979665776 hasConceptScore W2979665776C177769412 @default.
- W2979665776 hasConceptScore W2979665776C33923547 @default.
- W2979665776 hasConceptScore W2979665776C41008148 @default.
- W2979665776 hasConceptScore W2979665776C62611344 @default.
- W2979665776 hasConceptScore W2979665776C66938386 @default.
- W2979665776 hasConceptScore W2979665776C70518039 @default.
- W2979665776 hasConceptScore W2979665776C83546350 @default.
- W2979665776 hasFunder F4320337346 @default.
- W2979665776 hasIssue "10" @default.
- W2979665776 hasLocation W29796657761 @default.