Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979678230> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2979678230 endingPage "162218" @default.
- W2979678230 startingPage "162206" @default.
- W2979678230 abstract "Impurities in wheat seriously affect wheat quality and food security. They are mainly produced during the operational process of combine harvesters. To solve the recognition and classification problems associated with impurities in wheat, a recognition method using an improved convolutional neural network is proposed in this article. A labeled dataset of normal wheat and five impurities is constructed, using which the Wiener filtering algorithm and the multi-scale Retinex enhancement algorithm are employed for image preprocessing. Based on network research using Inception_v3, improvement and optimization are undertaken before designing the WheNet convolutional neural network, which is intended for automatic recognition of wheat images. Under the same conditions, comparative experiments using the WheNet, ResNet_101 and Inception_v3 networks are conducted. Indexes such as receiver operating characteristic, area under curve (AUC), and recall rate are adopted to evaluate the experimental outcomes. Experimental results indicate that the WheNet network achieved the most efficient results. It also shows a shorter training time, and its recognition accuracies for Top_1 and Top_5 of the test set are 98.59% and 99.98%, respectively. The mean values of both the AUC and recall rate of the network on the recognition of various images of impurities are higher than those of the ResNet_101 and Inception_v3 networks. Consequently, the WheNet network can be a useful tool in recognizing impurities in wheat. Furthermore, this method can be used to detect impurities in other fields." @default.
- W2979678230 created "2019-10-18" @default.
- W2979678230 creator A5018024166 @default.
- W2979678230 creator A5019071588 @default.
- W2979678230 creator A5023591534 @default.
- W2979678230 creator A5026270763 @default.
- W2979678230 creator A5042241049 @default.
- W2979678230 creator A5059985910 @default.
- W2979678230 creator A5083961524 @default.
- W2979678230 date "2019-01-01" @default.
- W2979678230 modified "2023-09-26" @default.
- W2979678230 title "Image Recognition Method Based on an Improved Convolutional Neural Network to Detect Impurities in Wheat" @default.
- W2979678230 cites W2014228296 @default.
- W2979678230 cites W2046284106 @default.
- W2979678230 cites W2066885828 @default.
- W2979678230 cites W2079818567 @default.
- W2979678230 cites W2136922672 @default.
- W2979678230 cites W2194775991 @default.
- W2979678230 cites W2205610530 @default.
- W2979678230 cites W2285671993 @default.
- W2979678230 cites W2473156356 @default.
- W2979678230 cites W2509901229 @default.
- W2979678230 cites W2543402402 @default.
- W2979678230 cites W2560397974 @default.
- W2979678230 cites W2579348194 @default.
- W2979678230 cites W2594889981 @default.
- W2979678230 cites W2598645336 @default.
- W2979678230 cites W2618530766 @default.
- W2979678230 cites W2731165298 @default.
- W2979678230 cites W2767767563 @default.
- W2979678230 cites W2805772477 @default.
- W2979678230 cites W2857196710 @default.
- W2979678230 cites W2910363199 @default.
- W2979678230 cites W2919115771 @default.
- W2979678230 cites W2930514556 @default.
- W2979678230 cites W2944599236 @default.
- W2979678230 cites W2954926493 @default.
- W2979678230 cites W2964054038 @default.
- W2979678230 cites W2966160658 @default.
- W2979678230 cites W3100931193 @default.
- W2979678230 cites W4240867279 @default.
- W2979678230 doi "https://doi.org/10.1109/access.2019.2946589" @default.
- W2979678230 hasPublicationYear "2019" @default.
- W2979678230 type Work @default.
- W2979678230 sameAs 2979678230 @default.
- W2979678230 citedByCount "15" @default.
- W2979678230 countsByYear W29796782302020 @default.
- W2979678230 countsByYear W29796782302021 @default.
- W2979678230 countsByYear W29796782302022 @default.
- W2979678230 countsByYear W29796782302023 @default.
- W2979678230 crossrefType "journal-article" @default.
- W2979678230 hasAuthorship W2979678230A5018024166 @default.
- W2979678230 hasAuthorship W2979678230A5019071588 @default.
- W2979678230 hasAuthorship W2979678230A5023591534 @default.
- W2979678230 hasAuthorship W2979678230A5026270763 @default.
- W2979678230 hasAuthorship W2979678230A5042241049 @default.
- W2979678230 hasAuthorship W2979678230A5059985910 @default.
- W2979678230 hasAuthorship W2979678230A5083961524 @default.
- W2979678230 hasBestOaLocation W29796782301 @default.
- W2979678230 hasConcept C10551718 @default.
- W2979678230 hasConcept C108583219 @default.
- W2979678230 hasConcept C119857082 @default.
- W2979678230 hasConcept C153180895 @default.
- W2979678230 hasConcept C154945302 @default.
- W2979678230 hasConcept C34736171 @default.
- W2979678230 hasConcept C41008148 @default.
- W2979678230 hasConcept C50644808 @default.
- W2979678230 hasConcept C81363708 @default.
- W2979678230 hasConcept C81669768 @default.
- W2979678230 hasConceptScore W2979678230C10551718 @default.
- W2979678230 hasConceptScore W2979678230C108583219 @default.
- W2979678230 hasConceptScore W2979678230C119857082 @default.
- W2979678230 hasConceptScore W2979678230C153180895 @default.
- W2979678230 hasConceptScore W2979678230C154945302 @default.
- W2979678230 hasConceptScore W2979678230C34736171 @default.
- W2979678230 hasConceptScore W2979678230C41008148 @default.
- W2979678230 hasConceptScore W2979678230C50644808 @default.
- W2979678230 hasConceptScore W2979678230C81363708 @default.
- W2979678230 hasConceptScore W2979678230C81669768 @default.
- W2979678230 hasLocation W29796782301 @default.
- W2979678230 hasLocation W29796782302 @default.
- W2979678230 hasOpenAccess W2979678230 @default.
- W2979678230 hasPrimaryLocation W29796782301 @default.
- W2979678230 hasRelatedWork W3162287876 @default.
- W2979678230 hasRelatedWork W3165525989 @default.
- W2979678230 hasRelatedWork W3169331722 @default.
- W2979678230 hasRelatedWork W3215374478 @default.
- W2979678230 hasRelatedWork W4200173597 @default.
- W2979678230 hasRelatedWork W4200250512 @default.
- W2979678230 hasRelatedWork W4285479813 @default.
- W2979678230 hasRelatedWork W4312417841 @default.
- W2979678230 hasRelatedWork W4313289316 @default.
- W2979678230 hasRelatedWork W4321369474 @default.
- W2979678230 hasVolume "7" @default.
- W2979678230 isParatext "false" @default.
- W2979678230 isRetracted "false" @default.
- W2979678230 magId "2979678230" @default.
- W2979678230 workType "article" @default.