Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979699022> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2979699022 endingPage "575" @default.
- W2979699022 startingPage "567" @default.
- W2979699022 abstract "Cone-beam computed tomography (CBCT) is increasingly used in radiotherapy for patient alignment and adaptive therapy where organ segmentation and target delineation are often required. However, due to the poor image quality, low soft tissue contrast, as well as the difficulty in acquiring segmentation labels on CBCT images, developing effective segmentation methods on CBCT has been a challenge. In this paper, we propose a deep model for segmenting organs in CBCT images without requiring labelled training CBCT images. By taking advantage of the available segmented computed tomography (CT) images, our adversarial learning domain adaptation method aims to synthesize CBCT images from CT images. Then the segmentation labels of the CT images can help train a deep segmentation network for CBCT images, using both CTs with labels and CBCTs without labels. Our adversarial learning domain adaptation is integrated with the CBCT segmentation network training with the designed loss functions. The synthesized CBCT images by pixel-level domain adaptation best capture the critical image features that help achieve accurate CBCT segmentation. Our experiments on the bladder images from Radiation Oncology clinics have shown that our CBCT segmentation with adversarial learning domain adaptation significantly improves segmentation accuracy compared to the existing methods without doing domain adaptation from CT to CBCT." @default.
- W2979699022 created "2019-10-18" @default.
- W2979699022 creator A5018120191 @default.
- W2979699022 creator A5024277918 @default.
- W2979699022 creator A5048522863 @default.
- W2979699022 creator A5063179713 @default.
- W2979699022 creator A5064264029 @default.
- W2979699022 creator A5069712305 @default.
- W2979699022 creator A5073946580 @default.
- W2979699022 creator A5075169323 @default.
- W2979699022 creator A5081307285 @default.
- W2979699022 creator A5083304846 @default.
- W2979699022 date "2019-01-01" @default.
- W2979699022 modified "2023-09-23" @default.
- W2979699022 title "Cone-Beam Computed Tomography (CBCT) Segmentation by Adversarial Learning Domain Adaptation" @default.
- W2979699022 cites W1901129140 @default.
- W2979699022 cites W2194775991 @default.
- W2979699022 cites W2889779108 @default.
- W2979699022 cites W2962793481 @default.
- W2979699022 cites W2963073614 @default.
- W2979699022 doi "https://doi.org/10.1007/978-3-030-32226-7_63" @default.
- W2979699022 hasPublicationYear "2019" @default.
- W2979699022 type Work @default.
- W2979699022 sameAs 2979699022 @default.
- W2979699022 citedByCount "8" @default.
- W2979699022 countsByYear W29796990222021 @default.
- W2979699022 countsByYear W29796990222022 @default.
- W2979699022 crossrefType "book-chapter" @default.
- W2979699022 hasAuthorship W2979699022A5018120191 @default.
- W2979699022 hasAuthorship W2979699022A5024277918 @default.
- W2979699022 hasAuthorship W2979699022A5048522863 @default.
- W2979699022 hasAuthorship W2979699022A5063179713 @default.
- W2979699022 hasAuthorship W2979699022A5064264029 @default.
- W2979699022 hasAuthorship W2979699022A5069712305 @default.
- W2979699022 hasAuthorship W2979699022A5073946580 @default.
- W2979699022 hasAuthorship W2979699022A5075169323 @default.
- W2979699022 hasAuthorship W2979699022A5081307285 @default.
- W2979699022 hasAuthorship W2979699022A5083304846 @default.
- W2979699022 hasBestOaLocation W29796990222 @default.
- W2979699022 hasConcept C108583219 @default.
- W2979699022 hasConcept C124504099 @default.
- W2979699022 hasConcept C126838900 @default.
- W2979699022 hasConcept C139807058 @default.
- W2979699022 hasConcept C154945302 @default.
- W2979699022 hasConcept C15744967 @default.
- W2979699022 hasConcept C169760540 @default.
- W2979699022 hasConcept C2779813781 @default.
- W2979699022 hasConcept C3018399558 @default.
- W2979699022 hasConcept C31972630 @default.
- W2979699022 hasConcept C41008148 @default.
- W2979699022 hasConcept C544519230 @default.
- W2979699022 hasConcept C71924100 @default.
- W2979699022 hasConcept C89600930 @default.
- W2979699022 hasConceptScore W2979699022C108583219 @default.
- W2979699022 hasConceptScore W2979699022C124504099 @default.
- W2979699022 hasConceptScore W2979699022C126838900 @default.
- W2979699022 hasConceptScore W2979699022C139807058 @default.
- W2979699022 hasConceptScore W2979699022C154945302 @default.
- W2979699022 hasConceptScore W2979699022C15744967 @default.
- W2979699022 hasConceptScore W2979699022C169760540 @default.
- W2979699022 hasConceptScore W2979699022C2779813781 @default.
- W2979699022 hasConceptScore W2979699022C3018399558 @default.
- W2979699022 hasConceptScore W2979699022C31972630 @default.
- W2979699022 hasConceptScore W2979699022C41008148 @default.
- W2979699022 hasConceptScore W2979699022C544519230 @default.
- W2979699022 hasConceptScore W2979699022C71924100 @default.
- W2979699022 hasConceptScore W2979699022C89600930 @default.
- W2979699022 hasLocation W29796990221 @default.
- W2979699022 hasLocation W29796990222 @default.
- W2979699022 hasOpenAccess W2979699022 @default.
- W2979699022 hasPrimaryLocation W29796990221 @default.
- W2979699022 hasRelatedWork W1669643531 @default.
- W2979699022 hasRelatedWork W2005437358 @default.
- W2979699022 hasRelatedWork W2008656436 @default.
- W2979699022 hasRelatedWork W2023558673 @default.
- W2979699022 hasRelatedWork W2110230079 @default.
- W2979699022 hasRelatedWork W2134924024 @default.
- W2979699022 hasRelatedWork W2517104666 @default.
- W2979699022 hasRelatedWork W2790662084 @default.
- W2979699022 hasRelatedWork W2960184797 @default.
- W2979699022 hasRelatedWork W4285827401 @default.
- W2979699022 isParatext "false" @default.
- W2979699022 isRetracted "false" @default.
- W2979699022 magId "2979699022" @default.
- W2979699022 workType "book-chapter" @default.