Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979708510> ?p ?o ?g. }
- W2979708510 abstract "ABSTRACT Rising antibiotic resistance inflicts a heavy burden on healthcare, both clinically and economically. Owing to the time required to obtain culture and sensitivity test results, quite often the clinicians rely on their experience and static clinical guidelines to prescribe antibiotics. Such empirical treatment often fails to account for patient-specific attributes and changes in the antibiotic resistance patterns with time and location. The aim of this study was to analyze the patient and hospital specific features regarding their prognostic relevance to treat bacterial infections of patients in the intensive care units (ICUs). We performed a single-center retrospective cohort analysis across 25526 positive cultures recorded in MIMIC-III critical care database. We retrieved a number of clinically relevant relationships from association analysis between patient factors and bacterial strains. For instance, higher elapsed time from patient admission to sample collection for culture showed strong association with blood stream infection caused by Enterococcus faecium, Pseudomonas aeruginosa , and Staphylococcus , indicating that these infections are possibly hospital acquired. To predict antibiotic sensitivity at the level of individual patients we developed an ensemble of machine learning algorithms. The model provided superior prediction accuracy (about 87%) and area under the ROC curve (around 0.91 on an average) for the four most common sample types as compared to a number of off-the-shelf techniques. We demonstrate the predictive power of commonly recorded patient attributes in personalised prediction of antibiotic efficacy." @default.
- W2979708510 created "2019-10-18" @default.
- W2979708510 creator A5005446354 @default.
- W2979708510 creator A5027929467 @default.
- W2979708510 creator A5034668567 @default.
- W2979708510 creator A5037882408 @default.
- W2979708510 creator A5059219025 @default.
- W2979708510 creator A5061015791 @default.
- W2979708510 creator A5073634006 @default.
- W2979708510 creator A5076468174 @default.
- W2979708510 creator A5090865932 @default.
- W2979708510 date "2019-09-20" @default.
- W2979708510 modified "2023-09-25" @default.
- W2979708510 title "Machine learning based prediction of antibiotic sensitivity in patients with critical illness" @default.
- W2979708510 cites W1543940108 @default.
- W2979708510 cites W1964171417 @default.
- W2979708510 cites W1989047560 @default.
- W2979708510 cites W1991401611 @default.
- W2979708510 cites W2032171228 @default.
- W2979708510 cites W2033524042 @default.
- W2979708510 cites W2072756125 @default.
- W2979708510 cites W2085481579 @default.
- W2979708510 cites W2098693822 @default.
- W2979708510 cites W2099264750 @default.
- W2979708510 cites W2126467946 @default.
- W2979708510 cites W2129168200 @default.
- W2979708510 cites W2129905020 @default.
- W2979708510 cites W2145541037 @default.
- W2979708510 cites W2149222743 @default.
- W2979708510 cites W2149514362 @default.
- W2979708510 cites W2162031520 @default.
- W2979708510 cites W2165158988 @default.
- W2979708510 cites W2169054220 @default.
- W2979708510 cites W2333022442 @default.
- W2979708510 cites W2396881363 @default.
- W2979708510 cites W2534501610 @default.
- W2979708510 cites W2557738935 @default.
- W2979708510 cites W2792304617 @default.
- W2979708510 cites W2793609878 @default.
- W2979708510 cites W2808670625 @default.
- W2979708510 cites W2886805531 @default.
- W2979708510 cites W2965957986 @default.
- W2979708510 cites W4294990605 @default.
- W2979708510 doi "https://doi.org/10.1101/19007153" @default.
- W2979708510 hasPublicationYear "2019" @default.
- W2979708510 type Work @default.
- W2979708510 sameAs 2979708510 @default.
- W2979708510 citedByCount "2" @default.
- W2979708510 countsByYear W29797085102020 @default.
- W2979708510 countsByYear W29797085102023 @default.
- W2979708510 crossrefType "posted-content" @default.
- W2979708510 hasAuthorship W2979708510A5005446354 @default.
- W2979708510 hasAuthorship W2979708510A5027929467 @default.
- W2979708510 hasAuthorship W2979708510A5034668567 @default.
- W2979708510 hasAuthorship W2979708510A5037882408 @default.
- W2979708510 hasAuthorship W2979708510A5059219025 @default.
- W2979708510 hasAuthorship W2979708510A5061015791 @default.
- W2979708510 hasAuthorship W2979708510A5073634006 @default.
- W2979708510 hasAuthorship W2979708510A5076468174 @default.
- W2979708510 hasAuthorship W2979708510A5090865932 @default.
- W2979708510 hasBestOaLocation W29797085101 @default.
- W2979708510 hasConcept C126322002 @default.
- W2979708510 hasConcept C167135981 @default.
- W2979708510 hasConcept C177713679 @default.
- W2979708510 hasConcept C194828623 @default.
- W2979708510 hasConcept C2777677444 @default.
- W2979708510 hasConcept C2779473907 @default.
- W2979708510 hasConcept C2780585763 @default.
- W2979708510 hasConcept C2987404301 @default.
- W2979708510 hasConcept C501593827 @default.
- W2979708510 hasConcept C58471807 @default.
- W2979708510 hasConcept C71924100 @default.
- W2979708510 hasConcept C86803240 @default.
- W2979708510 hasConcept C89423630 @default.
- W2979708510 hasConcept C94665300 @default.
- W2979708510 hasConceptScore W2979708510C126322002 @default.
- W2979708510 hasConceptScore W2979708510C167135981 @default.
- W2979708510 hasConceptScore W2979708510C177713679 @default.
- W2979708510 hasConceptScore W2979708510C194828623 @default.
- W2979708510 hasConceptScore W2979708510C2777677444 @default.
- W2979708510 hasConceptScore W2979708510C2779473907 @default.
- W2979708510 hasConceptScore W2979708510C2780585763 @default.
- W2979708510 hasConceptScore W2979708510C2987404301 @default.
- W2979708510 hasConceptScore W2979708510C501593827 @default.
- W2979708510 hasConceptScore W2979708510C58471807 @default.
- W2979708510 hasConceptScore W2979708510C71924100 @default.
- W2979708510 hasConceptScore W2979708510C86803240 @default.
- W2979708510 hasConceptScore W2979708510C89423630 @default.
- W2979708510 hasConceptScore W2979708510C94665300 @default.
- W2979708510 hasLocation W29797085101 @default.
- W2979708510 hasOpenAccess W2979708510 @default.
- W2979708510 hasPrimaryLocation W29797085101 @default.
- W2979708510 hasRelatedWork W1995150687 @default.
- W2979708510 hasRelatedWork W2045890647 @default.
- W2979708510 hasRelatedWork W2586931588 @default.
- W2979708510 hasRelatedWork W2800340463 @default.
- W2979708510 hasRelatedWork W3010340539 @default.
- W2979708510 hasRelatedWork W3083932983 @default.
- W2979708510 hasRelatedWork W3120685386 @default.
- W2979708510 hasRelatedWork W3166274739 @default.