Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979721712> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2979721712 endingPage "103866" @default.
- W2979721712 startingPage "103866" @default.
- W2979721712 abstract "Gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) are powerful techniques for measurement of all metabolites in complex metabolic samples. However, analyzing GC-MS and especially GC×GC-MS metabolomic data is a major challenge to the researchers in the field of metabolomics mainly due to the complexity and large data size. In this regard, an automated R based software entitled RMet has been developed to overcome the challenges in the metabolomic analysis workflow of GC-MS and GC×GC-MS data sets. Additionally, it is able to facilitate the complex process of extracting reliable and useful biological information from these data sets. Moreover, RMet can greatly accelerate the time-consuming data analysis process of large GC-MS and GC×GC-MS datasets by the means of modern chemometric methods. In fact, RMet transforms raw GC-MS and GC×GC-MS data files into the elution profiles and mass spectra of important (significantly affected metabolites) which can be imported into NIST MS search software for the final identification of these metabolites. To show the performance of the developed software, large GC×GC-MS data sets of a previously reported environmental metabolomics study on lettuce samples exposed to contaminants of emerging concerns (CECs) were analyzed by RMet. The procedure for analyzing GC-MS metabolic data with RMet is as same as GC×GC-MS data sets but some steps can be skipped due to the lower size of GC-MS data sets. The software, its manual, sample data sets and source code are freely available on https://github.com/SUTChemometricsGroup/RMet." @default.
- W2979721712 created "2019-10-18" @default.
- W2979721712 creator A5032255704 @default.
- W2979721712 creator A5054745164 @default.
- W2979721712 date "2019-11-01" @default.
- W2979721712 modified "2023-10-16" @default.
- W2979721712 title "RMet: An automated R based software for analyzing GC-MS and GC×GC-MS untargeted metabolomic data" @default.
- W2979721712 cites W1963910454 @default.
- W2979721712 cites W1971253368 @default.
- W2979721712 cites W1982116065 @default.
- W2979721712 cites W1987972238 @default.
- W2979721712 cites W2008476583 @default.
- W2979721712 cites W2016918522 @default.
- W2979721712 cites W2029870138 @default.
- W2979721712 cites W2034147585 @default.
- W2979721712 cites W2057592896 @default.
- W2979721712 cites W2075780134 @default.
- W2979721712 cites W2089181989 @default.
- W2979721712 cites W2093512816 @default.
- W2979721712 cites W2098722265 @default.
- W2979721712 cites W2312990678 @default.
- W2979721712 cites W2475353914 @default.
- W2979721712 cites W2551573268 @default.
- W2979721712 cites W2611904112 @default.
- W2979721712 cites W2708958157 @default.
- W2979721712 cites W2738419401 @default.
- W2979721712 cites W2744393374 @default.
- W2979721712 cites W2791332729 @default.
- W2979721712 cites W2796159810 @default.
- W2979721712 cites W4294216483 @default.
- W2979721712 doi "https://doi.org/10.1016/j.chemolab.2019.103866" @default.
- W2979721712 hasPublicationYear "2019" @default.
- W2979721712 type Work @default.
- W2979721712 sameAs 2979721712 @default.
- W2979721712 citedByCount "9" @default.
- W2979721712 countsByYear W29797217122020 @default.
- W2979721712 countsByYear W29797217122021 @default.
- W2979721712 countsByYear W29797217122022 @default.
- W2979721712 countsByYear W29797217122023 @default.
- W2979721712 crossrefType "journal-article" @default.
- W2979721712 hasAuthorship W2979721712A5032255704 @default.
- W2979721712 hasAuthorship W2979721712A5054745164 @default.
- W2979721712 hasConcept C123460561 @default.
- W2979721712 hasConcept C162356407 @default.
- W2979721712 hasConcept C177212765 @default.
- W2979721712 hasConcept C185592680 @default.
- W2979721712 hasConcept C199360897 @default.
- W2979721712 hasConcept C205345274 @default.
- W2979721712 hasConcept C21565614 @default.
- W2979721712 hasConcept C2777904410 @default.
- W2979721712 hasConcept C41008148 @default.
- W2979721712 hasConcept C43617362 @default.
- W2979721712 hasConcept C77088390 @default.
- W2979721712 hasConceptScore W2979721712C123460561 @default.
- W2979721712 hasConceptScore W2979721712C162356407 @default.
- W2979721712 hasConceptScore W2979721712C177212765 @default.
- W2979721712 hasConceptScore W2979721712C185592680 @default.
- W2979721712 hasConceptScore W2979721712C199360897 @default.
- W2979721712 hasConceptScore W2979721712C205345274 @default.
- W2979721712 hasConceptScore W2979721712C21565614 @default.
- W2979721712 hasConceptScore W2979721712C2777904410 @default.
- W2979721712 hasConceptScore W2979721712C41008148 @default.
- W2979721712 hasConceptScore W2979721712C43617362 @default.
- W2979721712 hasConceptScore W2979721712C77088390 @default.
- W2979721712 hasFunder F4320321157 @default.
- W2979721712 hasLocation W29797217121 @default.
- W2979721712 hasOpenAccess W2979721712 @default.
- W2979721712 hasPrimaryLocation W29797217121 @default.
- W2979721712 hasRelatedWork W2003174742 @default.
- W2979721712 hasRelatedWork W2013888808 @default.
- W2979721712 hasRelatedWork W2061767362 @default.
- W2979721712 hasRelatedWork W2087362512 @default.
- W2979721712 hasRelatedWork W2088041818 @default.
- W2979721712 hasRelatedWork W2153676202 @default.
- W2979721712 hasRelatedWork W2412300609 @default.
- W2979721712 hasRelatedWork W2418669595 @default.
- W2979721712 hasRelatedWork W272791457 @default.
- W2979721712 hasRelatedWork W2947387731 @default.
- W2979721712 hasVolume "194" @default.
- W2979721712 isParatext "false" @default.
- W2979721712 isRetracted "false" @default.
- W2979721712 magId "2979721712" @default.
- W2979721712 workType "article" @default.