Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979742445> ?p ?o ?g. }
- W2979742445 endingPage "608" @default.
- W2979742445 startingPage "608" @default.
- W2979742445 abstract "Based on the ensemble precipitation forecast data in the summers of 2014–2018 from the Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), a comparative study of two multi-model ensemble methods, the Bayesian model average (BMA) and the logistic regression (LR), was conducted. Meanwhile, forecasts of heavy precipitation from the two models over the Wujiang River Basin in China for the summer of 2018 were compared to verify their performances. The training period sensitivity test results show that a training period of 2 years was the best for BMA probability forecast model. Compared with the BMA method, the LR model required more statistical samples and its optimal length of the training period was 5 years. According to the Brier score (BS), for precipitation events exceeding 10 mm with lead times of 1–7 days, the BMA outperformed the LR and the raw ensemble prediction system forecasts (RAW) except for forecasts with a lead time of 1 day. Furthermore, for heavy rainfall events exceeding 25 and 50 mm, the RAW and the BMA performed much the same in terms of prediction. The reliability diagram of the two multi-model ensembles (i.e., BMA and LR) was more reliable than the RAW for heavy and moderate rainfall forecasts, and the BMA model had the best performance. The BMA probabilistic forecast can produce a highly concentrated probability density function (PDF) curve and can also provide deterministic forecasts through analyzing percentile forecast results. With regard to the heavy rainfall forecast in mountainous areas, it is recommended to refer to the forecast with a larger percentile between the 75th and 90th percentiles. Nevertheless, extreme events with low probability forecasts may occur and cannot be ignored." @default.
- W2979742445 created "2019-10-18" @default.
- W2979742445 creator A5058057953 @default.
- W2979742445 creator A5067537730 @default.
- W2979742445 creator A5078691797 @default.
- W2979742445 creator A5090056761 @default.
- W2979742445 creator A5090601664 @default.
- W2979742445 date "2019-10-09" @default.
- W2979742445 modified "2023-10-17" @default.
- W2979742445 title "Comparative Study on Probabilistic Forecasts of Heavy Rainfall in Mountainous Areas of the Wujiang River Basin in China Based on TIGGE Data" @default.
- W2979742445 cites W1545465591 @default.
- W2979742445 cites W1926265760 @default.
- W2979742445 cites W1966401971 @default.
- W2979742445 cites W2013765062 @default.
- W2979742445 cites W2021510303 @default.
- W2979742445 cites W2021978579 @default.
- W2979742445 cites W2037327690 @default.
- W2979742445 cites W2038044053 @default.
- W2979742445 cites W2055208896 @default.
- W2979742445 cites W2067796305 @default.
- W2979742445 cites W2068146025 @default.
- W2979742445 cites W2078173640 @default.
- W2979742445 cites W2090675528 @default.
- W2979742445 cites W2095845042 @default.
- W2979742445 cites W2099792945 @default.
- W2979742445 cites W2100956194 @default.
- W2979742445 cites W2103399563 @default.
- W2979742445 cites W2117315156 @default.
- W2979742445 cites W2128469217 @default.
- W2979742445 cites W2128618624 @default.
- W2979742445 cites W2142267599 @default.
- W2979742445 cites W2151695040 @default.
- W2979742445 cites W2158840489 @default.
- W2979742445 cites W2164939187 @default.
- W2979742445 cites W2166120424 @default.
- W2979742445 cites W2172654556 @default.
- W2979742445 cites W2174913527 @default.
- W2979742445 cites W2296277783 @default.
- W2979742445 cites W2353571302 @default.
- W2979742445 cites W2588712890 @default.
- W2979742445 cites W2593494947 @default.
- W2979742445 cites W2886555115 @default.
- W2979742445 cites W2916994096 @default.
- W2979742445 cites W2922364122 @default.
- W2979742445 cites W4249395738 @default.
- W2979742445 doi "https://doi.org/10.3390/atmos10100608" @default.
- W2979742445 hasPublicationYear "2019" @default.
- W2979742445 type Work @default.
- W2979742445 sameAs 2979742445 @default.
- W2979742445 citedByCount "7" @default.
- W2979742445 countsByYear W29797424452020 @default.
- W2979742445 countsByYear W29797424452021 @default.
- W2979742445 countsByYear W29797424452022 @default.
- W2979742445 countsByYear W29797424452023 @default.
- W2979742445 crossrefType "journal-article" @default.
- W2979742445 hasAuthorship W2979742445A5058057953 @default.
- W2979742445 hasAuthorship W2979742445A5067537730 @default.
- W2979742445 hasAuthorship W2979742445A5078691797 @default.
- W2979742445 hasAuthorship W2979742445A5090056761 @default.
- W2979742445 hasAuthorship W2979742445A5090601664 @default.
- W2979742445 hasBestOaLocation W29797424451 @default.
- W2979742445 hasConcept C105795698 @default.
- W2979742445 hasConcept C107054158 @default.
- W2979742445 hasConcept C122048520 @default.
- W2979742445 hasConcept C127313418 @default.
- W2979742445 hasConcept C132964779 @default.
- W2979742445 hasConcept C140178040 @default.
- W2979742445 hasConcept C153294291 @default.
- W2979742445 hasConcept C170061395 @default.
- W2979742445 hasConcept C197640229 @default.
- W2979742445 hasConcept C205649164 @default.
- W2979742445 hasConcept C33923547 @default.
- W2979742445 hasConcept C35405484 @default.
- W2979742445 hasConcept C39432304 @default.
- W2979742445 hasConcept C49204034 @default.
- W2979742445 hasConcept C49937458 @default.
- W2979742445 hasConceptScore W2979742445C105795698 @default.
- W2979742445 hasConceptScore W2979742445C107054158 @default.
- W2979742445 hasConceptScore W2979742445C122048520 @default.
- W2979742445 hasConceptScore W2979742445C127313418 @default.
- W2979742445 hasConceptScore W2979742445C132964779 @default.
- W2979742445 hasConceptScore W2979742445C140178040 @default.
- W2979742445 hasConceptScore W2979742445C153294291 @default.
- W2979742445 hasConceptScore W2979742445C170061395 @default.
- W2979742445 hasConceptScore W2979742445C197640229 @default.
- W2979742445 hasConceptScore W2979742445C205649164 @default.
- W2979742445 hasConceptScore W2979742445C33923547 @default.
- W2979742445 hasConceptScore W2979742445C35405484 @default.
- W2979742445 hasConceptScore W2979742445C39432304 @default.
- W2979742445 hasConceptScore W2979742445C49204034 @default.
- W2979742445 hasConceptScore W2979742445C49937458 @default.
- W2979742445 hasFunder F4320335777 @default.
- W2979742445 hasIssue "10" @default.
- W2979742445 hasLocation W29797424451 @default.
- W2979742445 hasLocation W29797424452 @default.
- W2979742445 hasOpenAccess W2979742445 @default.
- W2979742445 hasPrimaryLocation W29797424451 @default.
- W2979742445 hasRelatedWork W2147876351 @default.