Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979743032> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2979743032 endingPage "604" @default.
- W2979743032 startingPage "588" @default.
- W2979743032 abstract "Aiming at the increasing threat of fraud in electronic transactions, so far researchers have already proposed many different models. However, few previous studies take advantage of the sequential characteristics of fraudulent transactions. In this paper, by statistical analysis on a real dataset, we discover that partial-order sequential features are able to reflect the intrinsic motivation of fraudsters, e.g., stealing the money as quickly as possible before being intercepted. Based on the sequential features, we propose a novel model, SeqFD (Sequential feature boosting Fraud Detector), to detect fraudulent transactions real-timely. SeqFD applies a sliding time window strategy to aggregate the historical transactions. In specific, statistical sequential features are computed based on the transactions within the time window. Thus, the raw dataset can be transformed into a feature set. Several classification models are evaluated on the feature set, and finally, XGBoost is validated to be a fast, accurate and robust classifier which fits well with SeqFD. The experiments on real dataset show that the proposed model reaches a 97.2% TPR (True Positive Rate) when FPR (False Positive Rate) is less than 1%. Furthermore, the average time for giving a prediction is 1.5 ms, which meets the real-time requirement in the industry." @default.
- W2979743032 created "2019-10-18" @default.
- W2979743032 creator A5048379858 @default.
- W2979743032 creator A5075875553 @default.
- W2979743032 creator A5082262888 @default.
- W2979743032 date "2019-01-01" @default.
- W2979743032 modified "2023-10-05" @default.
- W2979743032 title "Thinking Like a Fraudster: Detecting Fraudulent Transactions via Statistical Sequential Features" @default.
- W2979743032 cites W126443724 @default.
- W2979743032 cites W1517113043 @default.
- W2979743032 cites W1602011302 @default.
- W2979743032 cites W1966493433 @default.
- W2979743032 cites W2068462258 @default.
- W2979743032 cites W2088402748 @default.
- W2979743032 cites W2096266510 @default.
- W2979743032 cites W2130416896 @default.
- W2979743032 cites W2282188696 @default.
- W2979743032 cites W2525596522 @default.
- W2979743032 cites W2789775179 @default.
- W2979743032 cites W2791067302 @default.
- W2979743032 cites W2919115771 @default.
- W2979743032 cites W3102476541 @default.
- W2979743032 doi "https://doi.org/10.1007/978-3-030-32101-7_34" @default.
- W2979743032 hasPublicationYear "2019" @default.
- W2979743032 type Work @default.
- W2979743032 sameAs 2979743032 @default.
- W2979743032 citedByCount "4" @default.
- W2979743032 countsByYear W29797430322020 @default.
- W2979743032 countsByYear W29797430322023 @default.
- W2979743032 crossrefType "book-chapter" @default.
- W2979743032 hasAuthorship W2979743032A5048379858 @default.
- W2979743032 hasAuthorship W2979743032A5075875553 @default.
- W2979743032 hasAuthorship W2979743032A5082262888 @default.
- W2979743032 hasConcept C102392041 @default.
- W2979743032 hasConcept C111919701 @default.
- W2979743032 hasConcept C119857082 @default.
- W2979743032 hasConcept C124101348 @default.
- W2979743032 hasConcept C138885662 @default.
- W2979743032 hasConcept C153180895 @default.
- W2979743032 hasConcept C154945302 @default.
- W2979743032 hasConcept C177264268 @default.
- W2979743032 hasConcept C199360897 @default.
- W2979743032 hasConcept C2776401178 @default.
- W2979743032 hasConcept C2778751112 @default.
- W2979743032 hasConcept C41008148 @default.
- W2979743032 hasConcept C41895202 @default.
- W2979743032 hasConcept C46686674 @default.
- W2979743032 hasConcept C95623464 @default.
- W2979743032 hasConcept C95922358 @default.
- W2979743032 hasConceptScore W2979743032C102392041 @default.
- W2979743032 hasConceptScore W2979743032C111919701 @default.
- W2979743032 hasConceptScore W2979743032C119857082 @default.
- W2979743032 hasConceptScore W2979743032C124101348 @default.
- W2979743032 hasConceptScore W2979743032C138885662 @default.
- W2979743032 hasConceptScore W2979743032C153180895 @default.
- W2979743032 hasConceptScore W2979743032C154945302 @default.
- W2979743032 hasConceptScore W2979743032C177264268 @default.
- W2979743032 hasConceptScore W2979743032C199360897 @default.
- W2979743032 hasConceptScore W2979743032C2776401178 @default.
- W2979743032 hasConceptScore W2979743032C2778751112 @default.
- W2979743032 hasConceptScore W2979743032C41008148 @default.
- W2979743032 hasConceptScore W2979743032C41895202 @default.
- W2979743032 hasConceptScore W2979743032C46686674 @default.
- W2979743032 hasConceptScore W2979743032C95623464 @default.
- W2979743032 hasConceptScore W2979743032C95922358 @default.
- W2979743032 hasLocation W29797430321 @default.
- W2979743032 hasOpenAccess W2979743032 @default.
- W2979743032 hasPrimaryLocation W29797430321 @default.
- W2979743032 hasRelatedWork W1987859285 @default.
- W2979743032 hasRelatedWork W1996541855 @default.
- W2979743032 hasRelatedWork W1999414040 @default.
- W2979743032 hasRelatedWork W2003125512 @default.
- W2979743032 hasRelatedWork W2141008330 @default.
- W2979743032 hasRelatedWork W2365320428 @default.
- W2979743032 hasRelatedWork W2563096758 @default.
- W2979743032 hasRelatedWork W4313488044 @default.
- W2979743032 hasRelatedWork W4386053843 @default.
- W2979743032 hasRelatedWork W6445124 @default.
- W2979743032 isParatext "false" @default.
- W2979743032 isRetracted "false" @default.
- W2979743032 magId "2979743032" @default.
- W2979743032 workType "book-chapter" @default.