Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979756468> ?p ?o ?g. }
- W2979756468 endingPage "143102" @default.
- W2979756468 startingPage "143102" @default.
- W2979756468 abstract "The interaction between multiple intense ultrashort laser pulses and solids is known to produce a regular nanoscale surface corrugation. A coupled mechanism has been identified that operates in a specific range of fluences in GaAs that exhibits transient loss of the imaginary part of the dielectric function and Χ2, which produces a unique corrugation known as high spatial frequency laser induced periodic surface structures (HSFL). The final structures have 180 nm periods, and their alignment perpendicular to the laser polarization is first observed in an intermediate morphology with correlation distances of 150 ± 40 nm. Quantum molecular dynamics simulations suggest that HSFL self-assembly is initiated when the intense laser field softens the interatomic binding potential, which leads to an ultrafast generation of point defects. The morphological evolution begins as self-interstitial diffusion, driven by stress relaxation, to the surface producing 1–2 nm tall islands. An ab initio calculation of excited electron concentration combined with a Drude-Lorentz model of the excited GaAs dielectric function is used to determine that the conditions for SPP coupling at HSFL formation fluences are both satisfied and occur at wavelengths that are imprinted into the observed surface morphologies. The evolution of these morphologies is explained as the interplay between surface plasmon polaritons that localize defect generation within the structures present on the previous laser exposure and stress relaxation driven defect diffusion.The interaction between multiple intense ultrashort laser pulses and solids is known to produce a regular nanoscale surface corrugation. A coupled mechanism has been identified that operates in a specific range of fluences in GaAs that exhibits transient loss of the imaginary part of the dielectric function and Χ2, which produces a unique corrugation known as high spatial frequency laser induced periodic surface structures (HSFL). The final structures have 180 nm periods, and their alignment perpendicular to the laser polarization is first observed in an intermediate morphology with correlation distances of 150 ± 40 nm. Quantum molecular dynamics simulations suggest that HSFL self-assembly is initiated when the intense laser field softens the interatomic binding potential, which leads to an ultrafast generation of point defects. The morphological evolution begins as self-interstitial diffusion, driven by stress relaxation, to the surface producing 1–2 nm tall islands. An ab initio calculation of excited e..." @default.
- W2979756468 created "2019-10-18" @default.
- W2979756468 creator A5015816340 @default.
- W2979756468 creator A5043093308 @default.
- W2979756468 creator A5072943396 @default.
- W2979756468 date "2019-10-14" @default.
- W2979756468 modified "2023-10-15" @default.
- W2979756468 title "Alignment of morphology during high spatial frequency periodic structure formation in GaAs" @default.
- W2979756468 cites W1539643835 @default.
- W2979756468 cites W1572432597 @default.
- W2979756468 cites W1968549817 @default.
- W2979756468 cites W1974626561 @default.
- W2979756468 cites W1975525832 @default.
- W2979756468 cites W1981448999 @default.
- W2979756468 cites W1981636810 @default.
- W2979756468 cites W1981947687 @default.
- W2979756468 cites W1984506457 @default.
- W2979756468 cites W1988297332 @default.
- W2979756468 cites W1989334085 @default.
- W2979756468 cites W1994151774 @default.
- W2979756468 cites W1997368721 @default.
- W2979756468 cites W2001696876 @default.
- W2979756468 cites W2003918753 @default.
- W2979756468 cites W2006765580 @default.
- W2979756468 cites W2013936187 @default.
- W2979756468 cites W2014959044 @default.
- W2979756468 cites W2015198946 @default.
- W2979756468 cites W2016727962 @default.
- W2979756468 cites W2017334281 @default.
- W2979756468 cites W2022157492 @default.
- W2979756468 cites W2022285050 @default.
- W2979756468 cites W2024942665 @default.
- W2979756468 cites W2026826007 @default.
- W2979756468 cites W2030767480 @default.
- W2979756468 cites W2035088688 @default.
- W2979756468 cites W2040376289 @default.
- W2979756468 cites W2041316682 @default.
- W2979756468 cites W2043823046 @default.
- W2979756468 cites W2044057103 @default.
- W2979756468 cites W2046471447 @default.
- W2979756468 cites W2046519084 @default.
- W2979756468 cites W2047372524 @default.
- W2979756468 cites W2050864163 @default.
- W2979756468 cites W2053256420 @default.
- W2979756468 cites W2053607184 @default.
- W2979756468 cites W2055449748 @default.
- W2979756468 cites W2061781560 @default.
- W2979756468 cites W2063496224 @default.
- W2979756468 cites W2063822356 @default.
- W2979756468 cites W2072633993 @default.
- W2979756468 cites W2077101062 @default.
- W2979756468 cites W2079179110 @default.
- W2979756468 cites W2082927645 @default.
- W2979756468 cites W2086867887 @default.
- W2979756468 cites W2089800828 @default.
- W2979756468 cites W2091296641 @default.
- W2979756468 cites W2092453938 @default.
- W2979756468 cites W2096675285 @default.
- W2979756468 cites W2099493464 @default.
- W2979756468 cites W2100133767 @default.
- W2979756468 cites W2100793147 @default.
- W2979756468 cites W2106609192 @default.
- W2979756468 cites W2107276982 @default.
- W2979756468 cites W2123343298 @default.
- W2979756468 cites W2133612681 @default.
- W2979756468 cites W2150318974 @default.
- W2979756468 cites W2158051631 @default.
- W2979756468 cites W2339041044 @default.
- W2979756468 cites W2397925100 @default.
- W2979756468 cites W2467778869 @default.
- W2979756468 cites W2528589598 @default.
- W2979756468 cites W2558983141 @default.
- W2979756468 cites W2560436385 @default.
- W2979756468 cites W2783270084 @default.
- W2979756468 cites W2963670023 @default.
- W2979756468 cites W4233269862 @default.
- W2979756468 doi "https://doi.org/10.1063/1.5114930" @default.
- W2979756468 hasPublicationYear "2019" @default.
- W2979756468 type Work @default.
- W2979756468 sameAs 2979756468 @default.
- W2979756468 citedByCount "4" @default.
- W2979756468 countsByYear W29797564682020 @default.
- W2979756468 countsByYear W29797564682021 @default.
- W2979756468 countsByYear W29797564682022 @default.
- W2979756468 crossrefType "journal-article" @default.
- W2979756468 hasAuthorship W2979756468A5015816340 @default.
- W2979756468 hasAuthorship W2979756468A5043093308 @default.
- W2979756468 hasAuthorship W2979756468A5072943396 @default.
- W2979756468 hasBestOaLocation W29797564681 @default.
- W2979756468 hasConcept C192562407 @default.
- W2979756468 hasConcept C49040817 @default.
- W2979756468 hasConcept C499950583 @default.
- W2979756468 hasConcept C54355233 @default.
- W2979756468 hasConcept C86803240 @default.
- W2979756468 hasConceptScore W2979756468C192562407 @default.
- W2979756468 hasConceptScore W2979756468C49040817 @default.
- W2979756468 hasConceptScore W2979756468C499950583 @default.
- W2979756468 hasConceptScore W2979756468C54355233 @default.