Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979783984> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2979783984 abstract "Skin lesion segmentation is an important process in skin diagnostics because it improves manual and computer-aided diagnostics by focusing the medical personnel on specific parts of the skin. Image segmentation is a common task in computer vision that partitions a digital image into multiple segments, for which deep neural networks have been proven to be reliable. In this paper, we investigate the applicability of deep learning methods for skin lesion segmentation evaluating three architectures: a pre-trained VGG16 encoder combined with SegNet decoder, TernausNet, and DeepLabV3+. The data set consists of images with RGB skin lesions and the ground truth of their segmentation. All the image sizes vary from hundreds to thousands of pixels per dimension. We evaluated the approaches with the Jaccard index and the computational efficiency of the training. The results show that the three deep neural network architectures achieve Jaccard Index scores of above 0.82, while the DeeplabV3+ outperforms the other approaches with a score of 0.876. The results are encouraging and can lead to fully-fledged automated approaches for skin lesion segmentation." @default.
- W2979783984 created "2019-10-18" @default.
- W2979783984 creator A5000303065 @default.
- W2979783984 creator A5016938068 @default.
- W2979783984 creator A5030441606 @default.
- W2979783984 creator A5050012848 @default.
- W2979783984 creator A5075392659 @default.
- W2979783984 date "2019-07-01" @default.
- W2979783984 modified "2023-10-01" @default.
- W2979783984 title "Skin lesion segmentation with deep learning" @default.
- W2979783984 cites W1998865404 @default.
- W2979783984 cites W2106033751 @default.
- W2979783984 cites W2194775991 @default.
- W2979783984 cites W2301358467 @default.
- W2979783984 cites W2412782625 @default.
- W2979783984 cites W2751390451 @default.
- W2979783984 cites W2962914239 @default.
- W2979783984 cites W2963163009 @default.
- W2979783984 cites W2963881378 @default.
- W2979783984 doi "https://doi.org/10.1109/eurocon.2019.8861636" @default.
- W2979783984 hasPublicationYear "2019" @default.
- W2979783984 type Work @default.
- W2979783984 sameAs 2979783984 @default.
- W2979783984 citedByCount "17" @default.
- W2979783984 countsByYear W29797839842020 @default.
- W2979783984 countsByYear W29797839842021 @default.
- W2979783984 countsByYear W29797839842022 @default.
- W2979783984 countsByYear W29797839842023 @default.
- W2979783984 crossrefType "proceedings-article" @default.
- W2979783984 hasAuthorship W2979783984A5000303065 @default.
- W2979783984 hasAuthorship W2979783984A5016938068 @default.
- W2979783984 hasAuthorship W2979783984A5030441606 @default.
- W2979783984 hasAuthorship W2979783984A5050012848 @default.
- W2979783984 hasAuthorship W2979783984A5075392659 @default.
- W2979783984 hasConcept C108583219 @default.
- W2979783984 hasConcept C124504099 @default.
- W2979783984 hasConcept C146849305 @default.
- W2979783984 hasConcept C153180895 @default.
- W2979783984 hasConcept C154945302 @default.
- W2979783984 hasConcept C203519979 @default.
- W2979783984 hasConcept C31972630 @default.
- W2979783984 hasConcept C41008148 @default.
- W2979783984 hasConcept C50644808 @default.
- W2979783984 hasConcept C89600930 @default.
- W2979783984 hasConceptScore W2979783984C108583219 @default.
- W2979783984 hasConceptScore W2979783984C124504099 @default.
- W2979783984 hasConceptScore W2979783984C146849305 @default.
- W2979783984 hasConceptScore W2979783984C153180895 @default.
- W2979783984 hasConceptScore W2979783984C154945302 @default.
- W2979783984 hasConceptScore W2979783984C203519979 @default.
- W2979783984 hasConceptScore W2979783984C31972630 @default.
- W2979783984 hasConceptScore W2979783984C41008148 @default.
- W2979783984 hasConceptScore W2979783984C50644808 @default.
- W2979783984 hasConceptScore W2979783984C89600930 @default.
- W2979783984 hasLocation W29797839841 @default.
- W2979783984 hasOpenAccess W2979783984 @default.
- W2979783984 hasPrimaryLocation W29797839841 @default.
- W2979783984 hasRelatedWork W1631910785 @default.
- W2979783984 hasRelatedWork W1669643531 @default.
- W2979783984 hasRelatedWork W2122581818 @default.
- W2979783984 hasRelatedWork W2130151498 @default.
- W2979783984 hasRelatedWork W2159066190 @default.
- W2979783984 hasRelatedWork W2551206155 @default.
- W2979783984 hasRelatedWork W2739874619 @default.
- W2979783984 hasRelatedWork W2948658236 @default.
- W2979783984 hasRelatedWork W3116883888 @default.
- W2979783984 hasRelatedWork W4294629529 @default.
- W2979783984 isParatext "false" @default.
- W2979783984 isRetracted "false" @default.
- W2979783984 magId "2979783984" @default.
- W2979783984 workType "article" @default.