Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979789044> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2979789044 abstract "The objective of this study was to build deep learning models with optical coherence tomography (OCT) images to classify normal and age related macular degeneration (AMD), AMD with fluid, and AMD without any fluid. In this study, 185 normal OCT images from 49 normal subjects, 535 OCT images of AMD with fluid, and 514 OCT mages of AMD without fluid from 120 AMD eyes as training data, while 49 normal images from 25 normal eyes, 188 AMD OCT images with fluid and 154 AMD images without any fluid from 77 AMD eyes as test data, were enrolled. Data augmentation was applied to increase the number of images to build deep learning models. Totally, two classification models were built in two steps. In the first step, a VGG16 model pre-trained on ImageNet dataset was transfer learned to classify normal and AMD, including AMD with fluid and/or without any fluid. Then, in the second step, the fine-tuned model in the first step was transfer learned again to distinguish the images of AMD with fluid from the ones without any fluid. With the first model, normal and AMD OCT images were classified with 0.999 area under receiver operating characteristic curve (AUC), and 99.2% accuracy. With the second model, AMD with the presence of any fluid, and AMD without fluid were classified with 0.992 AUC, and 95.1% accuracy. Compared with a transfer learned VGG16 model pre-trained on ImageNet dataset, to classify the three categories directly, higher classification performance was achieved with our notable approach. Conclusively, two classification models for AMD clinical practice were built with high classification performance, and these models should help improve the early diagnosis and treatment for AMD." @default.
- W2979789044 created "2019-10-18" @default.
- W2979789044 creator A5014175129 @default.
- W2979789044 creator A5020906317 @default.
- W2979789044 creator A5030655388 @default.
- W2979789044 creator A5032293652 @default.
- W2979789044 creator A5034787394 @default.
- W2979789044 creator A5038473974 @default.
- W2979789044 creator A5044565334 @default.
- W2979789044 creator A5072451434 @default.
- W2979789044 creator A5075473670 @default.
- W2979789044 creator A5081776983 @default.
- W2979789044 date "2019-07-01" @default.
- W2979789044 modified "2023-09-30" @default.
- W2979789044 title "Deep Learning Classification Models Built with Two-step Transfer Learning for Age Related Macular Degeneration Diagnosis" @default.
- W2979789044 cites W1996047957 @default.
- W2979789044 cites W2007014682 @default.
- W2979789044 cites W2042321005 @default.
- W2979789044 cites W2069110097 @default.
- W2979789044 cites W2463187181 @default.
- W2979789044 cites W2589074029 @default.
- W2979789044 cites W2758333670 @default.
- W2979789044 cites W2768217608 @default.
- W2979789044 cites W2886801379 @default.
- W2979789044 doi "https://doi.org/10.1109/embc.2019.8857468" @default.
- W2979789044 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31946304" @default.
- W2979789044 hasPublicationYear "2019" @default.
- W2979789044 type Work @default.
- W2979789044 sameAs 2979789044 @default.
- W2979789044 citedByCount "6" @default.
- W2979789044 countsByYear W29797890442021 @default.
- W2979789044 countsByYear W29797890442022 @default.
- W2979789044 countsByYear W29797890442023 @default.
- W2979789044 crossrefType "proceedings-article" @default.
- W2979789044 hasAuthorship W2979789044A5014175129 @default.
- W2979789044 hasAuthorship W2979789044A5020906317 @default.
- W2979789044 hasAuthorship W2979789044A5030655388 @default.
- W2979789044 hasAuthorship W2979789044A5032293652 @default.
- W2979789044 hasAuthorship W2979789044A5034787394 @default.
- W2979789044 hasAuthorship W2979789044A5038473974 @default.
- W2979789044 hasAuthorship W2979789044A5044565334 @default.
- W2979789044 hasAuthorship W2979789044A5072451434 @default.
- W2979789044 hasAuthorship W2979789044A5075473670 @default.
- W2979789044 hasAuthorship W2979789044A5081776983 @default.
- W2979789044 hasConcept C108583219 @default.
- W2979789044 hasConcept C118487528 @default.
- W2979789044 hasConcept C119857082 @default.
- W2979789044 hasConcept C150899416 @default.
- W2979789044 hasConcept C153180895 @default.
- W2979789044 hasConcept C154945302 @default.
- W2979789044 hasConcept C2776403814 @default.
- W2979789044 hasConcept C2778818243 @default.
- W2979789044 hasConcept C41008148 @default.
- W2979789044 hasConcept C58471807 @default.
- W2979789044 hasConcept C71924100 @default.
- W2979789044 hasConceptScore W2979789044C108583219 @default.
- W2979789044 hasConceptScore W2979789044C118487528 @default.
- W2979789044 hasConceptScore W2979789044C119857082 @default.
- W2979789044 hasConceptScore W2979789044C150899416 @default.
- W2979789044 hasConceptScore W2979789044C153180895 @default.
- W2979789044 hasConceptScore W2979789044C154945302 @default.
- W2979789044 hasConceptScore W2979789044C2776403814 @default.
- W2979789044 hasConceptScore W2979789044C2778818243 @default.
- W2979789044 hasConceptScore W2979789044C41008148 @default.
- W2979789044 hasConceptScore W2979789044C58471807 @default.
- W2979789044 hasConceptScore W2979789044C71924100 @default.
- W2979789044 hasLocation W29797890441 @default.
- W2979789044 hasLocation W29797890442 @default.
- W2979789044 hasOpenAccess W2979789044 @default.
- W2979789044 hasPrimaryLocation W29797890441 @default.
- W2979789044 hasRelatedWork W1171819408 @default.
- W2979789044 hasRelatedWork W2496452379 @default.
- W2979789044 hasRelatedWork W2551012455 @default.
- W2979789044 hasRelatedWork W2889705046 @default.
- W2979789044 hasRelatedWork W3018421652 @default.
- W2979789044 hasRelatedWork W3091976719 @default.
- W2979789044 hasRelatedWork W3192840557 @default.
- W2979789044 hasRelatedWork W4213299466 @default.
- W2979789044 hasRelatedWork W4292874285 @default.
- W2979789044 hasRelatedWork W771610953 @default.
- W2979789044 isParatext "false" @default.
- W2979789044 isRetracted "false" @default.
- W2979789044 magId "2979789044" @default.
- W2979789044 workType "article" @default.