Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979865984> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2979865984 abstract "The image classification is a classical problem of image processing, computer vision, and machine learning. This paper presents an analysis of the performance using Convolutional Neural Network (CNN) for image classifying using deep learning. MiniVGGNet is CNN architecture used in this paper to train a network for image classification, and CIFAR-10 is selected dataset used for this purpose. The performance of the network was improved by hyper parameter tuning techniques using batch normalization and learning rate decay factor. This paper compares the performance of the trained network by adding batch normalization layer and adjusting the value of learning rate decay factor for the network architecture. Based on the experimental results, adding batch normalization layer allow the networks to improve classification accuracy from 80% to 82%. Applying learning rate decay factor will improve classification accuracy to 83% and reduce the effects of overfitting in learning plot. Performance analysis shows that applying hyper parameter tuning can improve the performance of the network and increasing the ability of the model to generalize." @default.
- W2979865984 created "2019-10-18" @default.
- W2979865984 creator A5007244560 @default.
- W2979865984 creator A5064105727 @default.
- W2979865984 creator A5076985767 @default.
- W2979865984 creator A5083983732 @default.
- W2979865984 creator A5087264309 @default.
- W2979865984 date "2019-09-05" @default.
- W2979865984 modified "2023-09-27" @default.
- W2979865984 title "Improving Convolutional Neural Network (CNN) Architecture (miniVGGNet) with Batch Normalization and Learning Rate Decay Factor for Image Classification" @default.
- W2979865984 cites W2076063813 @default.
- W2979865984 cites W2080639449 @default.
- W2979865984 cites W2117228865 @default.
- W2979865984 cites W2161969291 @default.
- W2979865984 cites W2163352848 @default.
- W2979865984 cites W2163605009 @default.
- W2979865984 cites W2293682279 @default.
- W2979865984 cites W2922324928 @default.
- W2979865984 cites W2949117887 @default.
- W2979865984 doi "https://doi.org/10.30880/ijie.2019.11.04.006" @default.
- W2979865984 hasPublicationYear "2019" @default.
- W2979865984 type Work @default.
- W2979865984 sameAs 2979865984 @default.
- W2979865984 citedByCount "14" @default.
- W2979865984 countsByYear W29798659842020 @default.
- W2979865984 countsByYear W29798659842021 @default.
- W2979865984 countsByYear W29798659842022 @default.
- W2979865984 countsByYear W29798659842023 @default.
- W2979865984 crossrefType "journal-article" @default.
- W2979865984 hasAuthorship W2979865984A5007244560 @default.
- W2979865984 hasAuthorship W2979865984A5064105727 @default.
- W2979865984 hasAuthorship W2979865984A5076985767 @default.
- W2979865984 hasAuthorship W2979865984A5083983732 @default.
- W2979865984 hasAuthorship W2979865984A5087264309 @default.
- W2979865984 hasBestOaLocation W29798659841 @default.
- W2979865984 hasConcept C123657996 @default.
- W2979865984 hasConcept C136886441 @default.
- W2979865984 hasConcept C142362112 @default.
- W2979865984 hasConcept C144024400 @default.
- W2979865984 hasConcept C153180895 @default.
- W2979865984 hasConcept C153349607 @default.
- W2979865984 hasConcept C154945302 @default.
- W2979865984 hasConcept C19165224 @default.
- W2979865984 hasConcept C41008148 @default.
- W2979865984 hasConcept C81363708 @default.
- W2979865984 hasConceptScore W2979865984C123657996 @default.
- W2979865984 hasConceptScore W2979865984C136886441 @default.
- W2979865984 hasConceptScore W2979865984C142362112 @default.
- W2979865984 hasConceptScore W2979865984C144024400 @default.
- W2979865984 hasConceptScore W2979865984C153180895 @default.
- W2979865984 hasConceptScore W2979865984C153349607 @default.
- W2979865984 hasConceptScore W2979865984C154945302 @default.
- W2979865984 hasConceptScore W2979865984C19165224 @default.
- W2979865984 hasConceptScore W2979865984C41008148 @default.
- W2979865984 hasConceptScore W2979865984C81363708 @default.
- W2979865984 hasIssue "4" @default.
- W2979865984 hasLocation W29798659841 @default.
- W2979865984 hasLocation W29798659842 @default.
- W2979865984 hasOpenAccess W2979865984 @default.
- W2979865984 hasPrimaryLocation W29798659841 @default.
- W2979865984 hasRelatedWork W1991269640 @default.
- W2979865984 hasRelatedWork W2016839265 @default.
- W2979865984 hasRelatedWork W2175746458 @default.
- W2979865984 hasRelatedWork W2732542196 @default.
- W2979865984 hasRelatedWork W2738221750 @default.
- W2979865984 hasRelatedWork W2760085659 @default.
- W2979865984 hasRelatedWork W2883200793 @default.
- W2979865984 hasRelatedWork W2901346193 @default.
- W2979865984 hasRelatedWork W3012978760 @default.
- W2979865984 hasRelatedWork W3093612317 @default.
- W2979865984 hasVolume "11" @default.
- W2979865984 isParatext "false" @default.
- W2979865984 isRetracted "false" @default.
- W2979865984 magId "2979865984" @default.
- W2979865984 workType "article" @default.