Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979886058> ?p ?o ?g. }
- W2979886058 endingPage "80" @default.
- W2979886058 startingPage "68" @default.
- W2979886058 abstract "Host defense mechanisms fundamentally shape disease dynamics and virulence evolution. Feeding behaviors may play a critical, but overlooked, role in host defense and evolutionary epidemiology. Specifically, hosts typically reduce their feed intake in response to both realized and potential infections, despite the fact that defense mechanisms are energetically costly. The decline in feeding (‘illness-mediated anorexia’) shifts within-host energetics, metabolism, physiology, and immune functions in ways that alter the selective pressures facing parasites. Consequentially, illness-mediated anorexia may drive the evolution of higher or lower virulence, depending on its interactive effects on immunological and parasitological processes. Examining illness-mediated anorexia through the lens of evolutionary epidemiology carries important implications for disease management, especially for livestock and fish. The loss of appetite that typically accompanies infection or mere exposure to parasites is traditionally considered a negative byproduct of infection, benefitting neither the host nor the parasite. Numerous medical and veterinary practices directly or indirectly subvert this ‘illness-mediated anorexia’. However, the ecological factors that influence it, its effects on disease outcomes, and why it evolved remain poorly resolved. We explore how hosts use anorexia to defend against infection and how parasites manipulate anorexia to enhance transmission. Then, we use a coevolutionary model to illustrate how shifts in the magnitude of anorexia (e.g., via drugs) affect disease dynamics and virulence evolution. Anorexia could be exploited to improve disease management; we propose an interdisciplinary approach to minimize unintended consequences. The loss of appetite that typically accompanies infection or mere exposure to parasites is traditionally considered a negative byproduct of infection, benefitting neither the host nor the parasite. Numerous medical and veterinary practices directly or indirectly subvert this ‘illness-mediated anorexia’. However, the ecological factors that influence it, its effects on disease outcomes, and why it evolved remain poorly resolved. We explore how hosts use anorexia to defend against infection and how parasites manipulate anorexia to enhance transmission. Then, we use a coevolutionary model to illustrate how shifts in the magnitude of anorexia (e.g., via drugs) affect disease dynamics and virulence evolution. Anorexia could be exploited to improve disease management; we propose an interdisciplinary approach to minimize unintended consequences. the set of quantitative trait values expressed by both the host and the parasite that cannot be invaded by nearby trait values for either the host or parasite. The strategies we examine here are anorexia, exploitation, and virulence. the value of a quantitative trait (of the host or parasite) such that a population expressing this trait cannot be invaded by populations expressing a nearby trait value. the rate at which parasites steal resources from the host for their own growth and development, which, in turn, can affect virulence with concomitant changes in the shedding of infectious propagules into the environment. refers to the reproductive success of an individual (host or parasite), which involves both reproduction and survival and is measured in terms of genetic representation in the next generation. a usually temporary but substantial reduction in voluntary food intake that accompanies exposure to or infection by infectious agents (parasites and pathogens) and other antigenic challenges [e.g., lipopolysaccharide (LPS) or poly(I:C), which mimic generalized bacterial and viral infections, respectively]; can occur in uninfected and infected individuals alike; also known as parasite-induced anorexia, foraging-rate depression, often studied using calorie restriction. Illness-mediated anorexia is the most frequently used term for this condition, so we use it here for consistency’s sake, although there are likely to be many other, more appropriate terms. Note, it should not be confused with anorexia cachexia (a life-threatening condition associated with several pathologies and characterized by massive loss of body mass, anorexia, general inflammation, and pronounced muscle wasting) or anorexia nervosa (an emotional dysregulation characterized by an obsessive desire to lose weight by refusing to eat). harm, hypersensitivity, or disease arising from activity of the immune system. used here to refer to the trait value that maximizes a fitness expression, given a set of constraints or life-history trade-offs. the ability to control parasite levels; can occur by preventing the establishment of parasite infection or reducing the infective dose (known as ‘anti-infection resistance’ or avoidance) or reducing the parasite growth or burden within infected hosts (known as ‘antigrowth resistance’ or clearance). use of a third species or compounds by hosts to reduce the likelihood of specific compounds infection (can occur in uninfected and infected individuals alike) or to fight or inhibit parasite growth once infected (occurs in infected individuals). stereotypical behavioral changes that accompany different phases of exposure to or infection by parasites and pathogens – anorexia, fever, lethargy, somnolence, and decreased libido. a reduction in infection-induced pathology (e.g., fecundity loss, mortality) that does not reduce parasite infection or growth. parasite-induced reduction in host fitness; often equated with the disease-induced mortality rate and therefore involves both direct harm from the parasite and associated immunopathology." @default.
- W2979886058 created "2019-10-18" @default.
- W2979886058 creator A5011739264 @default.
- W2979886058 creator A5062076247 @default.
- W2979886058 creator A5069951693 @default.
- W2979886058 date "2020-01-01" @default.
- W2979886058 modified "2023-10-12" @default.
- W2979886058 title "Starving the Enemy? Feeding Behavior Shapes Host-Parasite Interactions" @default.
- W2979886058 cites W1192714282 @default.
- W2979886058 cites W1589044283 @default.
- W2979886058 cites W1779437710 @default.
- W2979886058 cites W1948962023 @default.
- W2979886058 cites W1957543141 @default.
- W2979886058 cites W1965301687 @default.
- W2979886058 cites W1969560824 @default.
- W2979886058 cites W1977601064 @default.
- W2979886058 cites W1981113057 @default.
- W2979886058 cites W1985626518 @default.
- W2979886058 cites W1988467227 @default.
- W2979886058 cites W2005324031 @default.
- W2979886058 cites W2007677207 @default.
- W2979886058 cites W2015804532 @default.
- W2979886058 cites W2018525968 @default.
- W2979886058 cites W2034689410 @default.
- W2979886058 cites W2035349831 @default.
- W2979886058 cites W2038877988 @default.
- W2979886058 cites W2046518060 @default.
- W2979886058 cites W2048084158 @default.
- W2979886058 cites W2048452039 @default.
- W2979886058 cites W2051245225 @default.
- W2979886058 cites W2055701378 @default.
- W2979886058 cites W2074247362 @default.
- W2979886058 cites W2075831119 @default.
- W2979886058 cites W2080951625 @default.
- W2979886058 cites W2084609978 @default.
- W2979886058 cites W2086608992 @default.
- W2979886058 cites W2087076688 @default.
- W2979886058 cites W2089682070 @default.
- W2979886058 cites W2098213048 @default.
- W2979886058 cites W2099443046 @default.
- W2979886058 cites W2099555137 @default.
- W2979886058 cites W2102600079 @default.
- W2979886058 cites W2103654465 @default.
- W2979886058 cites W2113685656 @default.
- W2979886058 cites W2115801932 @default.
- W2979886058 cites W2122995853 @default.
- W2979886058 cites W2128275519 @default.
- W2979886058 cites W2130133091 @default.
- W2979886058 cites W2132302345 @default.
- W2979886058 cites W2137108464 @default.
- W2979886058 cites W2142427207 @default.
- W2979886058 cites W2147188333 @default.
- W2979886058 cites W2147930673 @default.
- W2979886058 cites W2148837650 @default.
- W2979886058 cites W2149651880 @default.
- W2979886058 cites W2151959708 @default.
- W2979886058 cites W2153383033 @default.
- W2979886058 cites W2156803129 @default.
- W2979886058 cites W2157482696 @default.
- W2979886058 cites W2157757055 @default.
- W2979886058 cites W2161620412 @default.
- W2979886058 cites W2164257454 @default.
- W2979886058 cites W2166819494 @default.
- W2979886058 cites W2170313691 @default.
- W2979886058 cites W2171171738 @default.
- W2979886058 cites W2175467080 @default.
- W2979886058 cites W2177622633 @default.
- W2979886058 cites W2180373448 @default.
- W2979886058 cites W2266100393 @default.
- W2979886058 cites W2276163152 @default.
- W2979886058 cites W2297040872 @default.
- W2979886058 cites W2513994159 @default.
- W2979886058 cites W2520805035 @default.
- W2979886058 cites W2580150325 @default.
- W2979886058 cites W2737866937 @default.
- W2979886058 cites W2741801944 @default.
- W2979886058 cites W2747823845 @default.
- W2979886058 cites W2757006627 @default.
- W2979886058 cites W2771770118 @default.
- W2979886058 cites W2782269431 @default.
- W2979886058 cites W2789034114 @default.
- W2979886058 cites W2797785003 @default.
- W2979886058 cites W2799779188 @default.
- W2979886058 cites W2802682690 @default.
- W2979886058 cites W2806938285 @default.
- W2979886058 cites W2810103400 @default.
- W2979886058 cites W2899368613 @default.
- W2979886058 cites W2921201704 @default.
- W2979886058 cites W2929723735 @default.
- W2979886058 cites W2944767477 @default.
- W2979886058 cites W2959463585 @default.
- W2979886058 cites W4243895713 @default.
- W2979886058 cites W752199962 @default.
- W2979886058 cites W8264594 @default.
- W2979886058 doi "https://doi.org/10.1016/j.tree.2019.08.004" @default.
- W2979886058 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31604593" @default.
- W2979886058 hasPublicationYear "2020" @default.
- W2979886058 type Work @default.