Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979889712> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2979889712 abstract "There has been a lot of researches allocated to image denoising in recent years. One of the appropriate approaches for image denoising is applying nonlinear thresholding techniques in time-frequency transform domains. These transforms decompose an image to a series of elementary waveforms called basis functions or dictionary atoms. Different directional time-frequency dictionaries provide various geometrical X-let transforms in two or higher dimensions. In this paper, we have a comparative study of geometrical X-let transforms including 2D-Discrete Wavelet (2D-DWT), Dual-Tree Complex Wavelet (DT-CWT), Curvelet, Contourlet, Steerable Pyramid (STP) and Circlet Transform (CT) in application of image denoising. Experimental results show that in synthetic images of Optical Coherence Tomography (OCT), the Steerable Pyramid outperforms other geometrical X-lets in terms of Peak Signal-to-Noise Ratio (PSNR), while DT-CWT is superior in terms of Structural Similarity Index (SSIM). Moreover, in real images of OCT which consist of retinal layers, Curvelet Transform has better results in terms of Contrast-to-Noise Ratio (CNR) and 2D-DWT is better in Edge Preservation (EP) and Texture Preservation (TP) which indicate various X-lets can be effective due to different criteria and different images." @default.
- W2979889712 created "2019-10-18" @default.
- W2979889712 creator A5029789559 @default.
- W2979889712 creator A5052490368 @default.
- W2979889712 creator A5068195743 @default.
- W2979889712 date "2019-07-01" @default.
- W2979889712 modified "2023-09-23" @default.
- W2979889712 title "Geometrical X-lets for Image Denoising" @default.
- W2979889712 cites W1974112723 @default.
- W2979889712 cites W1995663818 @default.
- W2979889712 cites W2047781078 @default.
- W2979889712 cites W2048169076 @default.
- W2979889712 cites W2057824052 @default.
- W2979889712 cites W2061052441 @default.
- W2979889712 cites W2067191022 @default.
- W2979889712 cites W2081571847 @default.
- W2979889712 cites W2082290429 @default.
- W2979889712 cites W2093381832 @default.
- W2979889712 cites W2094909439 @default.
- W2979889712 cites W2109812093 @default.
- W2979889712 cites W2113945798 @default.
- W2979889712 cites W2116540818 @default.
- W2979889712 cites W2117853853 @default.
- W2979889712 cites W2125527601 @default.
- W2979889712 cites W2132680427 @default.
- W2979889712 cites W2133665775 @default.
- W2979889712 cites W2134929491 @default.
- W2979889712 cites W2144451417 @default.
- W2979889712 cites W2146842127 @default.
- W2979889712 cites W2147497470 @default.
- W2979889712 cites W2158940042 @default.
- W2979889712 cites W2160785095 @default.
- W2979889712 cites W2177031359 @default.
- W2979889712 cites W2257232880 @default.
- W2979889712 cites W2343300050 @default.
- W2979889712 doi "https://doi.org/10.1109/embc.2019.8856318" @default.
- W2979889712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31946450" @default.
- W2979889712 hasPublicationYear "2019" @default.
- W2979889712 type Work @default.
- W2979889712 sameAs 2979889712 @default.
- W2979889712 citedByCount "2" @default.
- W2979889712 countsByYear W29798897122020 @default.
- W2979889712 countsByYear W29798897122021 @default.
- W2979889712 crossrefType "proceedings-article" @default.
- W2979889712 hasAuthorship W2979889712A5029789559 @default.
- W2979889712 hasAuthorship W2979889712A5052490368 @default.
- W2979889712 hasAuthorship W2979889712A5068195743 @default.
- W2979889712 hasConcept C131720326 @default.
- W2979889712 hasConcept C153180895 @default.
- W2979889712 hasConcept C154945302 @default.
- W2979889712 hasConcept C163294075 @default.
- W2979889712 hasConcept C196216189 @default.
- W2979889712 hasConcept C20479862 @default.
- W2979889712 hasConcept C2777885455 @default.
- W2979889712 hasConcept C31972630 @default.
- W2979889712 hasConcept C33923547 @default.
- W2979889712 hasConcept C41008148 @default.
- W2979889712 hasConcept C46286280 @default.
- W2979889712 hasConcept C47432892 @default.
- W2979889712 hasConceptScore W2979889712C131720326 @default.
- W2979889712 hasConceptScore W2979889712C153180895 @default.
- W2979889712 hasConceptScore W2979889712C154945302 @default.
- W2979889712 hasConceptScore W2979889712C163294075 @default.
- W2979889712 hasConceptScore W2979889712C196216189 @default.
- W2979889712 hasConceptScore W2979889712C20479862 @default.
- W2979889712 hasConceptScore W2979889712C2777885455 @default.
- W2979889712 hasConceptScore W2979889712C31972630 @default.
- W2979889712 hasConceptScore W2979889712C33923547 @default.
- W2979889712 hasConceptScore W2979889712C41008148 @default.
- W2979889712 hasConceptScore W2979889712C46286280 @default.
- W2979889712 hasConceptScore W2979889712C47432892 @default.
- W2979889712 hasLocation W29798897121 @default.
- W2979889712 hasLocation W29798897122 @default.
- W2979889712 hasOpenAccess W2979889712 @default.
- W2979889712 hasPrimaryLocation W29798897121 @default.
- W2979889712 hasRelatedWork W1809875158 @default.
- W2979889712 hasRelatedWork W2021427222 @default.
- W2979889712 hasRelatedWork W2037328875 @default.
- W2979889712 hasRelatedWork W2129282069 @default.
- W2979889712 hasRelatedWork W2163073107 @default.
- W2979889712 hasRelatedWork W2547897849 @default.
- W2979889712 hasRelatedWork W2561072616 @default.
- W2979889712 hasRelatedWork W2971327321 @default.
- W2979889712 hasRelatedWork W1966344949 @default.
- W2979889712 hasRelatedWork W2181380846 @default.
- W2979889712 isParatext "false" @default.
- W2979889712 isRetracted "false" @default.
- W2979889712 magId "2979889712" @default.
- W2979889712 workType "article" @default.