Matches in SemOpenAlex for { <https://semopenalex.org/work/W2979929042> ?p ?o ?g. }
- W2979929042 endingPage "1589" @default.
- W2979929042 startingPage "1561" @default.
- W2979929042 abstract "This article investigates the potential for an r-adaptation algorithm to improve the efficiency of space–time residual distribution schemes in the approximation of time-dependent hyperbolic conservation laws, e.g. scalar advection, shallow water flows, on unstructured, triangular meshes. In this adaptive framework the connectivity of the mesh, and hence the number of degrees of freedom, remain fixed, but the mesh nodes are continually “relocated” as the flow evolves so that features of interest remain resolved as they move within the domain. Adaptive strategies of this type are well suited to the space–time residual distribution framework because, when the discrete representation is allowed to be discontinuous in time, these algorithms can be designed to be positive (and hence stable) for any choice of time-step, even on the distorted space–time prisms which arise from moving the nodes of an unstructured triangular mesh. Consequently, a local increase in mesh resolution does not impose a more restrictive stability constraint on the time-step, which can instead be chosen according to accuracy requirements. The order of accuracy of the fixed-mesh scheme is retained on the moving mesh in the majority of applications tested. Space–time schemes of this type are analogous to conservative ALE formulations and automatically satisfy a discrete geometric conservation law, so moving the mesh does not artificially change the flow volume for pure conservation laws. For shallow water flows over variable bed topography, the so-called C-property (retention of hydrostatic balance between flux and source terms, required to maintain the steady state of still, flat, water) can also be satisfied by considering the mass balance equation in terms of free surface level instead of water depth, even when the mesh is moved. The r-adaptation is applied within each time-step by interleaving the iterations of the nonlinear solver with updates to mesh node positions. The node movement is driven by a monitor function based on weighted approximations of the scaled gradient and Laplacian of the local solution and regularised by a smoothing iteration. Numerical results are shown in two dimensions for both scalar advection and for shallow water flow over a variable bed which show that, even for this simple implementation of the mesh movement, reductions in cpu times of up to 60% can be attained without increasing the error." @default.
- W2979929042 created "2019-10-18" @default.
- W2979929042 creator A5023976539 @default.
- W2979929042 creator A5044314946 @default.
- W2979929042 creator A5082027942 @default.
- W2979929042 date "2020-03-01" @default.
- W2979929042 modified "2023-10-16" @default.
- W2979929042 title "Space–time residual distribution on moving meshes" @default.
- W2979929042 cites W1967857696 @default.
- W2979929042 cites W1968241756 @default.
- W2979929042 cites W1983036154 @default.
- W2979929042 cites W1985435786 @default.
- W2979929042 cites W1985537588 @default.
- W2979929042 cites W1995000778 @default.
- W2979929042 cites W1996923088 @default.
- W2979929042 cites W1999979364 @default.
- W2979929042 cites W2003686746 @default.
- W2979929042 cites W2006192909 @default.
- W2979929042 cites W2006351016 @default.
- W2979929042 cites W2022958167 @default.
- W2979929042 cites W2031043673 @default.
- W2979929042 cites W2037517377 @default.
- W2979929042 cites W2060148408 @default.
- W2979929042 cites W2068192984 @default.
- W2979929042 cites W2068690761 @default.
- W2979929042 cites W2074304814 @default.
- W2979929042 cites W2075344034 @default.
- W2979929042 cites W2081026555 @default.
- W2979929042 cites W2084765148 @default.
- W2979929042 cites W2085151126 @default.
- W2979929042 cites W2098343517 @default.
- W2979929042 cites W2106536286 @default.
- W2979929042 cites W2110908912 @default.
- W2979929042 cites W2114015474 @default.
- W2979929042 cites W2122180808 @default.
- W2979929042 cites W2125884724 @default.
- W2979929042 cites W2153976751 @default.
- W2979929042 cites W2157850179 @default.
- W2979929042 cites W2542357505 @default.
- W2979929042 cites W2547741353 @default.
- W2979929042 cites W2739470739 @default.
- W2979929042 cites W2963134571 @default.
- W2979929042 cites W3250287 @default.
- W2979929042 cites W4239068033 @default.
- W2979929042 doi "https://doi.org/10.1016/j.camwa.2019.09.019" @default.
- W2979929042 hasPublicationYear "2020" @default.
- W2979929042 type Work @default.
- W2979929042 sameAs 2979929042 @default.
- W2979929042 citedByCount "4" @default.
- W2979929042 countsByYear W29799290422020 @default.
- W2979929042 countsByYear W29799290422022 @default.
- W2979929042 countsByYear W29799290422023 @default.
- W2979929042 crossrefType "journal-article" @default.
- W2979929042 hasAuthorship W2979929042A5023976539 @default.
- W2979929042 hasAuthorship W2979929042A5044314946 @default.
- W2979929042 hasAuthorship W2979929042A5082027942 @default.
- W2979929042 hasBestOaLocation W29799290422 @default.
- W2979929042 hasConcept C100695618 @default.
- W2979929042 hasConcept C11413529 @default.
- W2979929042 hasConcept C121332964 @default.
- W2979929042 hasConcept C126255220 @default.
- W2979929042 hasConcept C127413603 @default.
- W2979929042 hasConcept C130187892 @default.
- W2979929042 hasConcept C131053463 @default.
- W2979929042 hasConcept C134306372 @default.
- W2979929042 hasConcept C135628077 @default.
- W2979929042 hasConcept C155512373 @default.
- W2979929042 hasConcept C181145010 @default.
- W2979929042 hasConcept C2524010 @default.
- W2979929042 hasConcept C28826006 @default.
- W2979929042 hasConcept C31487907 @default.
- W2979929042 hasConcept C33923547 @default.
- W2979929042 hasConcept C3445786 @default.
- W2979929042 hasConcept C38349280 @default.
- W2979929042 hasConcept C42360764 @default.
- W2979929042 hasConcept C459310 @default.
- W2979929042 hasConcept C50478463 @default.
- W2979929042 hasConcept C57691317 @default.
- W2979929042 hasConcept C57879066 @default.
- W2979929042 hasConcept C62520636 @default.
- W2979929042 hasConcept C96402334 @default.
- W2979929042 hasConcept C97355855 @default.
- W2979929042 hasConceptScore W2979929042C100695618 @default.
- W2979929042 hasConceptScore W2979929042C11413529 @default.
- W2979929042 hasConceptScore W2979929042C121332964 @default.
- W2979929042 hasConceptScore W2979929042C126255220 @default.
- W2979929042 hasConceptScore W2979929042C127413603 @default.
- W2979929042 hasConceptScore W2979929042C130187892 @default.
- W2979929042 hasConceptScore W2979929042C131053463 @default.
- W2979929042 hasConceptScore W2979929042C134306372 @default.
- W2979929042 hasConceptScore W2979929042C135628077 @default.
- W2979929042 hasConceptScore W2979929042C155512373 @default.
- W2979929042 hasConceptScore W2979929042C181145010 @default.
- W2979929042 hasConceptScore W2979929042C2524010 @default.
- W2979929042 hasConceptScore W2979929042C28826006 @default.
- W2979929042 hasConceptScore W2979929042C31487907 @default.
- W2979929042 hasConceptScore W2979929042C33923547 @default.
- W2979929042 hasConceptScore W2979929042C3445786 @default.