Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980011412> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2980011412 endingPage "012093" @default.
- W2980011412 startingPage "012093" @default.
- W2980011412 abstract "Blind image Steganalysis is the binomial classification problem of determining if an image contains hidden data or not. Classification problems have two main steps: i) feature extraction step and ii) classification step. Traditional blind image steganalysis approaches use handcrafted filters for the first step and use classifiers such as support vector machine (SVM) for the second step. The rapid development of steganographic techniques makes it harder to design new effective handcrafted filters, which negatively affect the feature extraction step. Recently, Convolutional Neural networks (CNNs) are introduced as an auspicious solution for this problem. CNN-based steganalysis can automatically extract features from the input images without using handcrafted filters. Although considerable success has been achieved with CNNs, CNN-based applications are considered as time consuming applications. Accordingly, it is important to quicken the CNN-based steganalysis approaches training in order to make them more applicable. This paper suggested an implementation technique of the improved Gaussian-Neuron CNN (IGNCNN) steganalysis approach on GPUs. In this paper data parallelism concept is applied to the convolutional layers while model parallelism concept is applied to the fully connected layers. Results show that the proposed method provides better performance as compared with IGNCNN [1] by an average speed up factor of 1.4 X." @default.
- W2980011412 created "2019-10-18" @default.
- W2980011412 creator A5016372374 @default.
- W2980011412 creator A5020293470 @default.
- W2980011412 creator A5053623601 @default.
- W2980011412 date "2019-10-11" @default.
- W2980011412 modified "2023-09-26" @default.
- W2980011412 title "Enhancing the performance of CNN-based blind image steganalysis approach using multi-GPU TESLA P100" @default.
- W2980011412 cites W2009130368 @default.
- W2980011412 cites W2018369178 @default.
- W2980011412 cites W2124664712 @default.
- W2980011412 cites W2183964636 @default.
- W2980011412 cites W22271197 @default.
- W2980011412 cites W2322622188 @default.
- W2980011412 cites W2725312425 @default.
- W2980011412 cites W2963682422 @default.
- W2980011412 doi "https://doi.org/10.1088/1757-899x/610/1/012093" @default.
- W2980011412 hasPublicationYear "2019" @default.
- W2980011412 type Work @default.
- W2980011412 sameAs 2980011412 @default.
- W2980011412 citedByCount "0" @default.
- W2980011412 crossrefType "journal-article" @default.
- W2980011412 hasAuthorship W2980011412A5016372374 @default.
- W2980011412 hasAuthorship W2980011412A5020293470 @default.
- W2980011412 hasAuthorship W2980011412A5053623601 @default.
- W2980011412 hasBestOaLocation W29800114121 @default.
- W2980011412 hasConcept C107368093 @default.
- W2980011412 hasConcept C108801101 @default.
- W2980011412 hasConcept C115961682 @default.
- W2980011412 hasConcept C12267149 @default.
- W2980011412 hasConcept C138885662 @default.
- W2980011412 hasConcept C153180895 @default.
- W2980011412 hasConcept C154945302 @default.
- W2980011412 hasConcept C2776401178 @default.
- W2980011412 hasConcept C41008148 @default.
- W2980011412 hasConcept C41895202 @default.
- W2980011412 hasConcept C52622490 @default.
- W2980011412 hasConcept C75294576 @default.
- W2980011412 hasConcept C81363708 @default.
- W2980011412 hasConceptScore W2980011412C107368093 @default.
- W2980011412 hasConceptScore W2980011412C108801101 @default.
- W2980011412 hasConceptScore W2980011412C115961682 @default.
- W2980011412 hasConceptScore W2980011412C12267149 @default.
- W2980011412 hasConceptScore W2980011412C138885662 @default.
- W2980011412 hasConceptScore W2980011412C153180895 @default.
- W2980011412 hasConceptScore W2980011412C154945302 @default.
- W2980011412 hasConceptScore W2980011412C2776401178 @default.
- W2980011412 hasConceptScore W2980011412C41008148 @default.
- W2980011412 hasConceptScore W2980011412C41895202 @default.
- W2980011412 hasConceptScore W2980011412C52622490 @default.
- W2980011412 hasConceptScore W2980011412C75294576 @default.
- W2980011412 hasConceptScore W2980011412C81363708 @default.
- W2980011412 hasLocation W29800114121 @default.
- W2980011412 hasOpenAccess W2980011412 @default.
- W2980011412 hasPrimaryLocation W29800114121 @default.
- W2980011412 hasRelatedWork W2141999940 @default.
- W2980011412 hasRelatedWork W2184826071 @default.
- W2980011412 hasRelatedWork W2732542196 @default.
- W2980011412 hasRelatedWork W2760085659 @default.
- W2980011412 hasRelatedWork W2767651786 @default.
- W2980011412 hasRelatedWork W2940977206 @default.
- W2980011412 hasRelatedWork W2969680539 @default.
- W2980011412 hasRelatedWork W3156786002 @default.
- W2980011412 hasRelatedWork W4232794086 @default.
- W2980011412 hasRelatedWork W4281768501 @default.
- W2980011412 hasVolume "610" @default.
- W2980011412 isParatext "false" @default.
- W2980011412 isRetracted "false" @default.
- W2980011412 magId "2980011412" @default.
- W2980011412 workType "article" @default.