Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980054274> ?p ?o ?g. }
- W2980054274 endingPage "3842" @default.
- W2980054274 startingPage "3829" @default.
- W2980054274 abstract "Kernel methods, e.g., composite kernels (CKs) and spatial-spectral kernels (SSKs), have been demonstrated to be an effective way to exploit the spatial-spectral information nonlinearly for improving the classification performance of hyperspectral image (HSI). However, these methods are always conducted with square-shaped window or superpixel techniques. Both techniques are likely to misclassify the pixels that lie at the boundaries of class, and thus a small target is always smoothed away. To alleviate these problems, in this paper, we propose a novel patch-based low rank component induced spatial-spectral kernel method, termed LRCISSK, for HSI classification. First, the latent low-rank features of spectra in each cubic patch of HSI are reconstructed by a low rank matrix recovery (LRMR) technique, and then, to further explore more accurate spatial information, they are used to identify a homogeneous neighborhood for the target pixel (i.e., the centroid pixel) adaptively. Finally, the adaptively identified homogenous neighborhood which consists of the latent low-rank spectra is embedded into the spatial-spectral kernel framework. It can easily map the spectra into the nonlinearly complex manifolds and enable a classifier (e.g., support vector machine, SVM) to distinguish them effectively. Experimental results on three real HSI datasets validate that the proposed LRCISSK method can effectively explore the spatial-spectral information and deliver superior performance with at least 1.30% higher OA and 1.03% higher AA on average when compared to other state-of-the-art classifiers." @default.
- W2980054274 created "2019-10-18" @default.
- W2980054274 creator A5031361250 @default.
- W2980054274 creator A5046185549 @default.
- W2980054274 creator A5051172458 @default.
- W2980054274 creator A5059068224 @default.
- W2980054274 creator A5067737362 @default.
- W2980054274 creator A5074587654 @default.
- W2980054274 creator A5087119507 @default.
- W2980054274 date "2020-10-01" @default.
- W2980054274 modified "2023-10-17" @default.
- W2980054274 title "Low Rank Component Induced Spatial-Spectral Kernel Method for Hyperspectral Image Classification" @default.
- W2980054274 cites W1600550542 @default.
- W2980054274 cites W1939429412 @default.
- W2980054274 cites W1971891445 @default.
- W2980054274 cites W1979730959 @default.
- W2980054274 cites W1994040806 @default.
- W2980054274 cites W1997565609 @default.
- W2980054274 cites W1998030734 @default.
- W2980054274 cites W2024082504 @default.
- W2980054274 cites W2045095960 @default.
- W2980054274 cites W2051090063 @default.
- W2980054274 cites W2057196195 @default.
- W2980054274 cites W2070576129 @default.
- W2980054274 cites W2073748771 @default.
- W2980054274 cites W2073933500 @default.
- W2980054274 cites W2074594734 @default.
- W2980054274 cites W2077028485 @default.
- W2980054274 cites W2085625911 @default.
- W2980054274 cites W2089662979 @default.
- W2980054274 cites W2091089627 @default.
- W2980054274 cites W2097915756 @default.
- W2980054274 cites W2099129687 @default.
- W2980054274 cites W2101479772 @default.
- W2980054274 cites W2127199143 @default.
- W2980054274 cites W2129652905 @default.
- W2980054274 cites W2131864940 @default.
- W2980054274 cites W2132648706 @default.
- W2980054274 cites W2144188273 @default.
- W2980054274 cites W2144348684 @default.
- W2980054274 cites W2147590979 @default.
- W2980054274 cites W2158400785 @default.
- W2980054274 cites W2161278885 @default.
- W2980054274 cites W2163346236 @default.
- W2980054274 cites W2164330327 @default.
- W2980054274 cites W2166923144 @default.
- W2980054274 cites W2190646811 @default.
- W2980054274 cites W2200631819 @default.
- W2980054274 cites W2245956216 @default.
- W2980054274 cites W2294492906 @default.
- W2980054274 cites W2344373810 @default.
- W2980054274 cites W2345019888 @default.
- W2980054274 cites W2464748116 @default.
- W2980054274 cites W2542472381 @default.
- W2980054274 cites W2555840851 @default.
- W2980054274 cites W2579929594 @default.
- W2980054274 cites W2603494857 @default.
- W2980054274 cites W2617982036 @default.
- W2980054274 cites W2620569598 @default.
- W2980054274 cites W2747744463 @default.
- W2980054274 cites W2756432460 @default.
- W2980054274 cites W2756481566 @default.
- W2980054274 cites W2764285290 @default.
- W2980054274 cites W2770315464 @default.
- W2980054274 cites W2770611245 @default.
- W2980054274 cites W2781745664 @default.
- W2980054274 cites W2790346082 @default.
- W2980054274 cites W2809635958 @default.
- W2980054274 cites W2888527098 @default.
- W2980054274 cites W2897199189 @default.
- W2980054274 cites W2903268675 @default.
- W2980054274 cites W2908833896 @default.
- W2980054274 cites W2912961521 @default.
- W2980054274 cites W2921396149 @default.
- W2980054274 cites W2947104191 @default.
- W2980054274 cites W3141645824 @default.
- W2980054274 doi "https://doi.org/10.1109/tcsvt.2019.2946723" @default.
- W2980054274 hasPublicationYear "2020" @default.
- W2980054274 type Work @default.
- W2980054274 sameAs 2980054274 @default.
- W2980054274 citedByCount "67" @default.
- W2980054274 countsByYear W29800542742019 @default.
- W2980054274 countsByYear W29800542742020 @default.
- W2980054274 countsByYear W29800542742021 @default.
- W2980054274 countsByYear W29800542742022 @default.
- W2980054274 countsByYear W29800542742023 @default.
- W2980054274 crossrefType "journal-article" @default.
- W2980054274 hasAuthorship W2980054274A5031361250 @default.
- W2980054274 hasAuthorship W2980054274A5046185549 @default.
- W2980054274 hasAuthorship W2980054274A5051172458 @default.
- W2980054274 hasAuthorship W2980054274A5059068224 @default.
- W2980054274 hasAuthorship W2980054274A5067737362 @default.
- W2980054274 hasAuthorship W2980054274A5074587654 @default.
- W2980054274 hasAuthorship W2980054274A5087119507 @default.
- W2980054274 hasConcept C114614502 @default.
- W2980054274 hasConcept C121332964 @default.
- W2980054274 hasConcept C153180895 @default.
- W2980054274 hasConcept C154945302 @default.