Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980079746> ?p ?o ?g. }
- W2980079746 abstract "Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) denoising. Unfortunately, while their denoising performance benefits little from more spectral bands, the running time of these methods significantly increases. In this paper, we claim that the HSI lies in a global spectral low-rank subspace, and the spectral subspaces of each full band patch groups should lie in this global low-rank subspace. This motivates us to propose a unified spatial-spectral paradigm for HSI denoising. As the new model is hard to optimize, An efficient algorithm motivated by alternating minimization is developed. This is done by first learning a low-dimensional orthogonal basis and the related reduced image from the noisy HSI. Then, the non-local low-rank denoising and iterative regularization are developed to refine the reduced image and orthogonal basis, respectively. Finally, the experiments on synthetic and both real datasets demonstrate the superiority against the stateof-the-art HSI denoising methods." @default.
- W2980079746 created "2019-10-18" @default.
- W2980079746 creator A5003753200 @default.
- W2980079746 creator A5024704138 @default.
- W2980079746 creator A5034435383 @default.
- W2980079746 creator A5072484211 @default.
- W2980079746 creator A5083182987 @default.
- W2980079746 date "2019-06-01" @default.
- W2980079746 modified "2023-10-05" @default.
- W2980079746 title "Non-Local Meets Global: An Integrated Paradigm for Hyperspectral Denoising" @default.
- W2980079746 cites W1944540851 @default.
- W2980079746 cites W1963408805 @default.
- W2980079746 cites W1970099214 @default.
- W2980079746 cites W1985242206 @default.
- W2980079746 cites W1991003630 @default.
- W2980079746 cites W1994040806 @default.
- W2980079746 cites W2012946078 @default.
- W2980079746 cites W2014311222 @default.
- W2980079746 cites W2018990310 @default.
- W2980079746 cites W2022470997 @default.
- W2980079746 cites W2024165284 @default.
- W2980079746 cites W2030270830 @default.
- W2980079746 cites W2031007444 @default.
- W2980079746 cites W2043381570 @default.
- W2980079746 cites W2048695508 @default.
- W2980079746 cites W2070424424 @default.
- W2980079746 cites W2072026894 @default.
- W2980079746 cites W2082590963 @default.
- W2980079746 cites W2095906131 @default.
- W2980079746 cites W2100109944 @default.
- W2980079746 cites W2129891925 @default.
- W2980079746 cites W2133665775 @default.
- W2980079746 cites W2147353113 @default.
- W2980079746 cites W2155124307 @default.
- W2980079746 cites W2161073299 @default.
- W2980079746 cites W2163886442 @default.
- W2980079746 cites W2171520281 @default.
- W2980079746 cites W2198155329 @default.
- W2980079746 cites W2237974960 @default.
- W2980079746 cites W2336406062 @default.
- W2980079746 cites W2462946880 @default.
- W2980079746 cites W2466594406 @default.
- W2980079746 cites W2520219995 @default.
- W2980079746 cites W2613155248 @default.
- W2980079746 cites W2724686744 @default.
- W2980079746 cites W2743606449 @default.
- W2980079746 cites W2747865121 @default.
- W2980079746 cites W2748967439 @default.
- W2980079746 cites W2790528326 @default.
- W2980079746 cites W2790888198 @default.
- W2980079746 cites W2793237446 @default.
- W2980079746 cites W2793775875 @default.
- W2980079746 cites W2964193752 @default.
- W2980079746 cites W3104436273 @default.
- W2980079746 doi "https://doi.org/10.1109/cvpr.2019.00703" @default.
- W2980079746 hasPublicationYear "2019" @default.
- W2980079746 type Work @default.
- W2980079746 sameAs 2980079746 @default.
- W2980079746 citedByCount "93" @default.
- W2980079746 countsByYear W29800797462020 @default.
- W2980079746 countsByYear W29800797462021 @default.
- W2980079746 countsByYear W29800797462022 @default.
- W2980079746 countsByYear W29800797462023 @default.
- W2980079746 crossrefType "proceedings-article" @default.
- W2980079746 hasAuthorship W2980079746A5003753200 @default.
- W2980079746 hasAuthorship W2980079746A5024704138 @default.
- W2980079746 hasAuthorship W2980079746A5034435383 @default.
- W2980079746 hasAuthorship W2980079746A5072484211 @default.
- W2980079746 hasAuthorship W2980079746A5083182987 @default.
- W2980079746 hasBestOaLocation W29800797462 @default.
- W2980079746 hasConcept C11413529 @default.
- W2980079746 hasConcept C114614502 @default.
- W2980079746 hasConcept C12362212 @default.
- W2980079746 hasConcept C12426560 @default.
- W2980079746 hasConcept C126255220 @default.
- W2980079746 hasConcept C147764199 @default.
- W2980079746 hasConcept C153180895 @default.
- W2980079746 hasConcept C154945302 @default.
- W2980079746 hasConcept C159078339 @default.
- W2980079746 hasConcept C163294075 @default.
- W2980079746 hasConcept C164226766 @default.
- W2980079746 hasConcept C2524010 @default.
- W2980079746 hasConcept C2776135515 @default.
- W2980079746 hasConcept C32834561 @default.
- W2980079746 hasConcept C33923547 @default.
- W2980079746 hasConcept C41008148 @default.
- W2980079746 hasConceptScore W2980079746C11413529 @default.
- W2980079746 hasConceptScore W2980079746C114614502 @default.
- W2980079746 hasConceptScore W2980079746C12362212 @default.
- W2980079746 hasConceptScore W2980079746C12426560 @default.
- W2980079746 hasConceptScore W2980079746C126255220 @default.
- W2980079746 hasConceptScore W2980079746C147764199 @default.
- W2980079746 hasConceptScore W2980079746C153180895 @default.
- W2980079746 hasConceptScore W2980079746C154945302 @default.
- W2980079746 hasConceptScore W2980079746C159078339 @default.
- W2980079746 hasConceptScore W2980079746C163294075 @default.
- W2980079746 hasConceptScore W2980079746C164226766 @default.
- W2980079746 hasConceptScore W2980079746C2524010 @default.
- W2980079746 hasConceptScore W2980079746C2776135515 @default.
- W2980079746 hasConceptScore W2980079746C32834561 @default.