Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980104381> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2980104381 endingPage "101635" @default.
- W2980104381 startingPage "101635" @default.
- W2980104381 abstract "Abstract The completely automated public Turing test to tell computers and humans apart (CAPTCHA) is among the most common methods of authentication used by websites and web services. It is intended to protect online services from automated scripts and malicious programs. Text-based and audio CAPTCHA are two of the earliest such methods, and have been shown to be inadequate at protecting systems and services. Image-based CAPTCHA has been introduced to address the limitations of previous CAPTCHA methods. It uses image recognition tasks to determine whether the user is a human or a malicious program. In light of the sensitivity of protected resources, challenges to their security arising from advances in machine learning algorithms are investigated here. This study examines the strength of image-based CAPTCHA by proposing an image-based CAPTCHA breaking system. The proposed system can automatically answer challenges posed by the recently proposed Google image reCAPTCHA with minimal human intervention. It employs deep learning technologies and machine learning algorithms, including random forest, classification and regression trees (CART), bagging with CART, and na}ive Bayes to automatically answer challenges. The proposed attack mechanism achieved an average accuracy of 85.32% while successfully solving 56.29% of reCAPTCHA challenges posed to it. The results show current image-based CAPTCHAs to deter automated scripts and malicious programs provide a false sense of security." @default.
- W2980104381 created "2019-10-18" @default.
- W2980104381 creator A5042202161 @default.
- W2980104381 creator A5042276333 @default.
- W2980104381 date "2020-01-01" @default.
- W2980104381 modified "2023-09-24" @default.
- W2980104381 title "Is image-based CAPTCHA secure against attacks based on machine learning? An experimental study" @default.
- W2980104381 cites W1616111308 @default.
- W2980104381 cites W1817561967 @default.
- W2980104381 cites W1984338772 @default.
- W2980104381 cites W1985640802 @default.
- W2980104381 cites W2004076523 @default.
- W2980104381 cites W2022710553 @default.
- W2980104381 cites W2026669465 @default.
- W2980104381 cites W2027717998 @default.
- W2980104381 cites W2031859714 @default.
- W2980104381 cites W2081580037 @default.
- W2980104381 cites W2103672843 @default.
- W2980104381 cites W2114267717 @default.
- W2980104381 cites W2123457740 @default.
- W2980104381 cites W2165403938 @default.
- W2980104381 cites W2170505850 @default.
- W2980104381 cites W2216946510 @default.
- W2980104381 cites W2911964244 @default.
- W2980104381 cites W2919115771 @default.
- W2980104381 cites W4254515799 @default.
- W2980104381 doi "https://doi.org/10.1016/j.cose.2019.101635" @default.
- W2980104381 hasPublicationYear "2020" @default.
- W2980104381 type Work @default.
- W2980104381 sameAs 2980104381 @default.
- W2980104381 citedByCount "21" @default.
- W2980104381 countsByYear W29801043812020 @default.
- W2980104381 countsByYear W29801043812021 @default.
- W2980104381 countsByYear W29801043812022 @default.
- W2980104381 countsByYear W29801043812023 @default.
- W2980104381 crossrefType "journal-article" @default.
- W2980104381 hasAuthorship W2980104381A5042202161 @default.
- W2980104381 hasAuthorship W2980104381A5042276333 @default.
- W2980104381 hasConcept C115961682 @default.
- W2980104381 hasConcept C119857082 @default.
- W2980104381 hasConcept C154945302 @default.
- W2980104381 hasConcept C163339463 @default.
- W2980104381 hasConcept C31972630 @default.
- W2980104381 hasConcept C38652104 @default.
- W2980104381 hasConcept C41008148 @default.
- W2980104381 hasConceptScore W2980104381C115961682 @default.
- W2980104381 hasConceptScore W2980104381C119857082 @default.
- W2980104381 hasConceptScore W2980104381C154945302 @default.
- W2980104381 hasConceptScore W2980104381C163339463 @default.
- W2980104381 hasConceptScore W2980104381C31972630 @default.
- W2980104381 hasConceptScore W2980104381C38652104 @default.
- W2980104381 hasConceptScore W2980104381C41008148 @default.
- W2980104381 hasFunder F4320334937 @default.
- W2980104381 hasLocation W29801043811 @default.
- W2980104381 hasOpenAccess W2980104381 @default.
- W2980104381 hasPrimaryLocation W29801043811 @default.
- W2980104381 hasRelatedWork W1533292911 @default.
- W2980104381 hasRelatedWork W2005185696 @default.
- W2980104381 hasRelatedWork W2092957489 @default.
- W2980104381 hasRelatedWork W2130228941 @default.
- W2980104381 hasRelatedWork W2132132164 @default.
- W2980104381 hasRelatedWork W2161229648 @default.
- W2980104381 hasRelatedWork W2235753890 @default.
- W2980104381 hasRelatedWork W2314419244 @default.
- W2980104381 hasRelatedWork W2889893736 @default.
- W2980104381 hasRelatedWork W2993674027 @default.
- W2980104381 hasVolume "88" @default.
- W2980104381 isParatext "false" @default.
- W2980104381 isRetracted "false" @default.
- W2980104381 magId "2980104381" @default.
- W2980104381 workType "article" @default.