Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980113692> ?p ?o ?g. }
- W2980113692 abstract "Abstract While live-cell imaging is a powerful approach for studying the dynamics of cellular systems, converting these imaging data into quantitative, single-cell records of cellular behavior has been a longstanding challenge. Deep learning methods have proven capable of performing cell segmentation—a critical task for analyzing live-cell imaging data—but their performance in cell tracking has been limited by a lack of dynamic datasets with temporally consistent single-cell labels. We bridge this gap through integrated development of labeling and deep learning methodology. We present a new framework for scalable, human-in-the-loop labeling of live-cell imaging movies, which we use to label a large collection of movies of fluorescently labeled cell nuclei. We use these data to create a new deep-learning-based cell-tracking method that achieves state-of-the-art performance in cell tracking. We have made all of the data, code, and software publicly available with permissive open-source licensing through the DeepCell project’s web portal https://deepcell.org ." @default.
- W2980113692 created "2019-10-18" @default.
- W2980113692 creator A5013862391 @default.
- W2980113692 creator A5013902745 @default.
- W2980113692 creator A5015505060 @default.
- W2980113692 creator A5017186022 @default.
- W2980113692 creator A5030797397 @default.
- W2980113692 creator A5041639949 @default.
- W2980113692 creator A5042346537 @default.
- W2980113692 creator A5045170248 @default.
- W2980113692 creator A5049374073 @default.
- W2980113692 creator A5060815670 @default.
- W2980113692 creator A5061593628 @default.
- W2980113692 creator A5066665877 @default.
- W2980113692 creator A5066880171 @default.
- W2980113692 creator A5089437743 @default.
- W2980113692 date "2019-10-13" @default.
- W2980113692 modified "2023-10-18" @default.
- W2980113692 title "Caliban: Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning" @default.
- W2980113692 cites W1992182416 @default.
- W2980113692 cites W2008063578 @default.
- W2980113692 cites W2015159529 @default.
- W2980113692 cites W2064675550 @default.
- W2980113692 cites W2065455422 @default.
- W2980113692 cites W2066218351 @default.
- W2980113692 cites W2068179698 @default.
- W2980113692 cites W2075275335 @default.
- W2980113692 cites W2097651998 @default.
- W2980113692 cites W2105916176 @default.
- W2980113692 cites W2111967267 @default.
- W2980113692 cites W2125236548 @default.
- W2980113692 cites W2141273399 @default.
- W2980113692 cites W2141461755 @default.
- W2980113692 cites W2144026088 @default.
- W2980113692 cites W2168979150 @default.
- W2980113692 cites W2198296987 @default.
- W2980113692 cites W2222512263 @default.
- W2980113692 cites W2548342201 @default.
- W2980113692 cites W2565639579 @default.
- W2980113692 cites W2579024533 @default.
- W2980113692 cites W2604169508 @default.
- W2980113692 cites W2758694956 @default.
- W2980113692 cites W2883426678 @default.
- W2980113692 cites W2910628332 @default.
- W2980113692 cites W2953094064 @default.
- W2980113692 cites W2975634117 @default.
- W2980113692 cites W2981110120 @default.
- W2980113692 cites W3015600294 @default.
- W2980113692 cites W3025113607 @default.
- W2980113692 cites W3034233786 @default.
- W2980113692 cites W3037924247 @default.
- W2980113692 cites W3044380239 @default.
- W2980113692 cites W3046117255 @default.
- W2980113692 cites W3087685572 @default.
- W2980113692 cites W3094652721 @default.
- W2980113692 cites W3105177201 @default.
- W2980113692 cites W3125564923 @default.
- W2980113692 cites W3129809409 @default.
- W2980113692 cites W3134800960 @default.
- W2980113692 cites W3150322046 @default.
- W2980113692 cites W3165467680 @default.
- W2980113692 cites W3173032895 @default.
- W2980113692 cites W3197605820 @default.
- W2980113692 cites W3207267806 @default.
- W2980113692 cites W3214596602 @default.
- W2980113692 cites W4205786526 @default.
- W2980113692 cites W4220665371 @default.
- W2980113692 cites W4221064165 @default.
- W2980113692 cites W4223570418 @default.
- W2980113692 cites W4225821407 @default.
- W2980113692 cites W4251431888 @default.
- W2980113692 cites W4280512524 @default.
- W2980113692 cites W4281665512 @default.
- W2980113692 cites W4286377446 @default.
- W2980113692 cites W4294636758 @default.
- W2980113692 cites W4296691022 @default.
- W2980113692 cites W4308435054 @default.
- W2980113692 cites W4308804054 @default.
- W2980113692 cites W4312240428 @default.
- W2980113692 cites W4312815172 @default.
- W2980113692 cites W4365135118 @default.
- W2980113692 cites W4377019739 @default.
- W2980113692 doi "https://doi.org/10.1101/803205" @default.
- W2980113692 hasPublicationYear "2019" @default.
- W2980113692 type Work @default.
- W2980113692 sameAs 2980113692 @default.
- W2980113692 citedByCount "35" @default.
- W2980113692 countsByYear W29801136922017 @default.
- W2980113692 countsByYear W29801136922018 @default.
- W2980113692 countsByYear W29801136922020 @default.
- W2980113692 countsByYear W29801136922021 @default.
- W2980113692 countsByYear W29801136922022 @default.
- W2980113692 countsByYear W29801136922023 @default.
- W2980113692 crossrefType "posted-content" @default.
- W2980113692 hasAuthorship W2980113692A5013862391 @default.
- W2980113692 hasAuthorship W2980113692A5013902745 @default.
- W2980113692 hasAuthorship W2980113692A5015505060 @default.
- W2980113692 hasAuthorship W2980113692A5017186022 @default.
- W2980113692 hasAuthorship W2980113692A5030797397 @default.
- W2980113692 hasAuthorship W2980113692A5041639949 @default.