Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980174591> ?p ?o ?g. }
- W2980174591 endingPage "62" @default.
- W2980174591 startingPage "53" @default.
- W2980174591 abstract "Summary Delicate architecture of active material enables improving the performacne of lithium ion batteries. Environmental‐friendly Fe 2 O 3 anode has high theoretical specific capacity (1007 mAh g −1 ) in lithium ion batteries, but suffers from structural collapsing and poor electronic conductivity. Herein, we design an unique hierarchical iron oxide by regulating the initial precursor prussian blue and targeting hollow‐shell structures with full consideration of temperature controls. Among them, Fe 2 O 3 with a sheet‐crossing structure at 650°C, affords obvious advantages of improved electronic conductivity, short ionic diffusion length, prevented particle agglomeration, and buffer volume change. Thus, we achieve a superior discharge specific capacity of 611 mAh g −1 at 500 mA g −1 . Regulating hierarchical structure of prussian blue‐assisted oxides enables effectively enchancing Li storge performance. Lay Description Nanoparticle self‐assembly, one of bottom‐up methods is often used to prepare hollow hierarchical structures, whereas it suffers from low productivity and insufficient stability. Hence, we designed a unique hierarchical iron oxide by top‐down method with regulating the initial precursor PB and targeting hollow‐shell structures through full consideration of temperature controls. Delicate architecture of active material enables improving the performacne of lithium ion batteries. Environmental‐friendly Fe 2 O 3 anode has high theoretical specific capacity (1007 mAh g −1 ) in lithium ion batteries, but suffers from structural collapsing and poor electronic conductivity. Hence, we prepared Prussian Blue (PB) materials with different sizes and calcined them at different temperatures. We found that no matter what the size of PB, the sheet‐crossing morphology appeared at 650°C, and the interlaced morphology was the key to improve the performance of lithium batteries. If the size of PB precursor is too large or too small, it has adverse effects on lithium batteries. Only when the size and calcination temperature of PB precursor reach the optimum state, the best performance can be obtained. The calcination PB‐K‐3 at 650°C has a unique hierarchical structure of sheet‐crossing. An obvious advantages include the prevention of particle agglomeration, short ionic diffusion lengths, and buffering volume changes. As a consequence, 611 mAh g −1 was obtained at the current density of 500 mA g –1 . In addition, we observed the structural changes of electrode plates at different reaction potentials, according to the reaction equation of Fe 2 O 3 +xLi + +xe→Li x Fe 2 O 3 . With the proceeding charge process, the voltage increases from 0.01 to 3 V, the lithium ions gradually comes out of the iron oxide electrode surface. Whereas the discharging process reverses the aforementioned phenomena. Even if the changing volumes, however, the shape of cubic blocks for the PB‐K‐3 is preserved at different potentials. Taking these advantages into account, our designed MOFs‐derived struture was an effective way to prepare hollow hierarchical structure with enhanced Li storage performacne. Such work is expected to facilitate the design of new electrode structure of lithium batteries." @default.
- W2980174591 created "2019-10-18" @default.
- W2980174591 creator A5032880195 @default.
- W2980174591 creator A5041769049 @default.
- W2980174591 creator A5045108566 @default.
- W2980174591 creator A5066546729 @default.
- W2980174591 creator A5071755732 @default.
- W2980174591 creator A5072216085 @default.
- W2980174591 creator A5084621584 @default.
- W2980174591 date "2019-10-22" @default.
- W2980174591 modified "2023-10-12" @default.
- W2980174591 title "Architecting hierarchical shell porosity of hollow prussian blue‐derived iron oxide for enhanced Li storage" @default.
- W2980174591 cites W1462974405 @default.
- W2980174591 cites W1908501010 @default.
- W2980174591 cites W1968019977 @default.
- W2980174591 cites W2035493440 @default.
- W2980174591 cites W2044790533 @default.
- W2980174591 cites W2067442643 @default.
- W2980174591 cites W2078048381 @default.
- W2980174591 cites W2097440489 @default.
- W2980174591 cites W2130980536 @default.
- W2980174591 cites W2131330298 @default.
- W2980174591 cites W2152043273 @default.
- W2980174591 cites W2331458798 @default.
- W2980174591 cites W2409745493 @default.
- W2980174591 cites W2514270548 @default.
- W2980174591 cites W2562898362 @default.
- W2980174591 cites W2567271618 @default.
- W2980174591 cites W2570875574 @default.
- W2980174591 cites W2606885318 @default.
- W2980174591 cites W2608294287 @default.
- W2980174591 cites W2612932798 @default.
- W2980174591 cites W2672130116 @default.
- W2980174591 cites W2676751488 @default.
- W2980174591 cites W2729476522 @default.
- W2980174591 cites W2734618957 @default.
- W2980174591 cites W2742288343 @default.
- W2980174591 cites W2748031806 @default.
- W2980174591 cites W2766565944 @default.
- W2980174591 cites W2767435837 @default.
- W2980174591 cites W2772253455 @default.
- W2980174591 cites W2782201813 @default.
- W2980174591 cites W2791890144 @default.
- W2980174591 cites W2795183585 @default.
- W2980174591 cites W2795628352 @default.
- W2980174591 cites W2795747837 @default.
- W2980174591 cites W2797510580 @default.
- W2980174591 cites W2797870908 @default.
- W2980174591 cites W2800758870 @default.
- W2980174591 cites W2800810454 @default.
- W2980174591 cites W2802493826 @default.
- W2980174591 cites W2804953193 @default.
- W2980174591 cites W2808251515 @default.
- W2980174591 cites W2884793593 @default.
- W2980174591 cites W2886395115 @default.
- W2980174591 cites W2891467836 @default.
- W2980174591 cites W2901265829 @default.
- W2980174591 cites W2902441058 @default.
- W2980174591 cites W2904657599 @default.
- W2980174591 doi "https://doi.org/10.1111/jmi.12836" @default.
- W2980174591 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31603242" @default.
- W2980174591 hasPublicationYear "2019" @default.
- W2980174591 type Work @default.
- W2980174591 sameAs 2980174591 @default.
- W2980174591 citedByCount "7" @default.
- W2980174591 countsByYear W29801745912020 @default.
- W2980174591 countsByYear W29801745912021 @default.
- W2980174591 countsByYear W29801745912022 @default.
- W2980174591 countsByYear W29801745912023 @default.
- W2980174591 crossrefType "journal-article" @default.
- W2980174591 hasAuthorship W2980174591A5032880195 @default.
- W2980174591 hasAuthorship W2980174591A5041769049 @default.
- W2980174591 hasAuthorship W2980174591A5045108566 @default.
- W2980174591 hasAuthorship W2980174591A5066546729 @default.
- W2980174591 hasAuthorship W2980174591A5071755732 @default.
- W2980174591 hasAuthorship W2980174591A5072216085 @default.
- W2980174591 hasAuthorship W2980174591A5084621584 @default.
- W2980174591 hasConcept C127413603 @default.
- W2980174591 hasConcept C134018914 @default.
- W2980174591 hasConcept C147789679 @default.
- W2980174591 hasConcept C155672457 @default.
- W2980174591 hasConcept C159985019 @default.
- W2980174591 hasConcept C161790260 @default.
- W2980174591 hasConcept C171250308 @default.
- W2980174591 hasConcept C17525397 @default.
- W2980174591 hasConcept C178790620 @default.
- W2980174591 hasConcept C185592680 @default.
- W2980174591 hasConcept C192562407 @default.
- W2980174591 hasConcept C2778541603 @default.
- W2980174591 hasConcept C2779064266 @default.
- W2980174591 hasConcept C42360764 @default.
- W2980174591 hasConcept C52859227 @default.
- W2980174591 hasConcept C6648577 @default.
- W2980174591 hasConcept C7082614 @default.
- W2980174591 hasConcept C71924100 @default.
- W2980174591 hasConcept C82776694 @default.
- W2980174591 hasConcept C89395315 @default.
- W2980174591 hasConceptScore W2980174591C127413603 @default.