Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980187890> ?p ?o ?g. }
- W2980187890 endingPage "20422" @default.
- W2980187890 startingPage "20412" @default.
- W2980187890 abstract "The transient, cyclic nature and flexibility in process design make the optimization of pressure swing adsorption (PSA) computationally intensive. Two hybrid approaches incorporating machine learning methods into optimization routines are described. The first optimization approach uses artificial neural networks as surrogate models for function evaluations. The surrogates are constructed in the course of the initial optimization and utilized for function evaluations in subsequent optimization. In the second optimization approach, important design variables are identified to reduce the high-dimensional search space to a lower dimension based on partial least squares regression. The accuracy, robustness, and reliability of these approaches are demonstrated by considering a complex eight-step PSA process for precombustion CO2 capture as a case study. The machine learning-based optimization offers ∼10× reduction in computational efforts while achieving the same performance as that of the detailed models." @default.
- W2980187890 created "2019-10-18" @default.
- W2980187890 creator A5021079975 @default.
- W2980187890 creator A5032005339 @default.
- W2980187890 creator A5081873795 @default.
- W2980187890 creator A5090283736 @default.
- W2980187890 date "2019-10-10" @default.
- W2980187890 modified "2023-10-14" @default.
- W2980187890 title "Machine Learning-Based Multiobjective Optimization of Pressure Swing Adsorption" @default.
- W2980187890 cites W1125426479 @default.
- W2980187890 cites W1505115960 @default.
- W2980187890 cites W1555627060 @default.
- W2980187890 cites W1573505225 @default.
- W2980187890 cites W1579156571 @default.
- W2980187890 cites W1964229775 @default.
- W2980187890 cites W1966519533 @default.
- W2980187890 cites W1973020824 @default.
- W2980187890 cites W1984753492 @default.
- W2980187890 cites W1991726147 @default.
- W2980187890 cites W1996118950 @default.
- W2980187890 cites W1999897129 @default.
- W2980187890 cites W2006698084 @default.
- W2980187890 cites W2007965480 @default.
- W2980187890 cites W2012451526 @default.
- W2980187890 cites W2024737048 @default.
- W2980187890 cites W2064036745 @default.
- W2980187890 cites W2070467987 @default.
- W2980187890 cites W2077323522 @default.
- W2980187890 cites W2078559953 @default.
- W2980187890 cites W2081756587 @default.
- W2980187890 cites W2083426537 @default.
- W2980187890 cites W2093229042 @default.
- W2980187890 cites W2094176506 @default.
- W2980187890 cites W2103438081 @default.
- W2980187890 cites W2112548197 @default.
- W2980187890 cites W2126105956 @default.
- W2980187890 cites W2130496888 @default.
- W2980187890 cites W2149350706 @default.
- W2980187890 cites W2155684877 @default.
- W2980187890 cites W2156092361 @default.
- W2980187890 cites W2160381227 @default.
- W2980187890 cites W2169491164 @default.
- W2980187890 cites W2170199983 @default.
- W2980187890 cites W2190485801 @default.
- W2980187890 cites W2223640994 @default.
- W2980187890 cites W2233387007 @default.
- W2980187890 cites W2332033701 @default.
- W2980187890 cites W2333824955 @default.
- W2980187890 cites W2397349486 @default.
- W2980187890 cites W2469474971 @default.
- W2980187890 cites W2478899349 @default.
- W2980187890 cites W2606808263 @default.
- W2980187890 cites W2614950715 @default.
- W2980187890 cites W2804272245 @default.
- W2980187890 cites W2944800515 @default.
- W2980187890 cites W2946988044 @default.
- W2980187890 cites W2965048964 @default.
- W2980187890 cites W946729210 @default.
- W2980187890 doi "https://doi.org/10.1021/acs.iecr.9b04173" @default.
- W2980187890 hasPublicationYear "2019" @default.
- W2980187890 type Work @default.
- W2980187890 sameAs 2980187890 @default.
- W2980187890 citedByCount "62" @default.
- W2980187890 countsByYear W29801878902020 @default.
- W2980187890 countsByYear W29801878902021 @default.
- W2980187890 countsByYear W29801878902022 @default.
- W2980187890 countsByYear W29801878902023 @default.
- W2980187890 crossrefType "journal-article" @default.
- W2980187890 hasAuthorship W2980187890A5021079975 @default.
- W2980187890 hasAuthorship W2980187890A5032005339 @default.
- W2980187890 hasAuthorship W2980187890A5081873795 @default.
- W2980187890 hasAuthorship W2980187890A5090283736 @default.
- W2980187890 hasConcept C104317684 @default.
- W2980187890 hasConcept C105795698 @default.
- W2980187890 hasConcept C110850998 @default.
- W2980187890 hasConcept C11413529 @default.
- W2980187890 hasConcept C119857082 @default.
- W2980187890 hasConcept C126255220 @default.
- W2980187890 hasConcept C127413603 @default.
- W2980187890 hasConcept C131675550 @default.
- W2980187890 hasConcept C137836250 @default.
- W2980187890 hasConcept C150394285 @default.
- W2980187890 hasConcept C154945302 @default.
- W2980187890 hasConcept C178790620 @default.
- W2980187890 hasConcept C185592680 @default.
- W2980187890 hasConcept C201416721 @default.
- W2980187890 hasConcept C2780598303 @default.
- W2980187890 hasConcept C33923547 @default.
- W2980187890 hasConcept C41008148 @default.
- W2980187890 hasConcept C50644808 @default.
- W2980187890 hasConcept C55493867 @default.
- W2980187890 hasConcept C63479239 @default.
- W2980187890 hasConcept C65655974 @default.
- W2980187890 hasConcept C68781425 @default.
- W2980187890 hasConcept C70518039 @default.
- W2980187890 hasConcept C78519656 @default.
- W2980187890 hasConceptScore W2980187890C104317684 @default.
- W2980187890 hasConceptScore W2980187890C105795698 @default.