Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980238977> ?p ?o ?g. }
- W2980238977 endingPage "430" @default.
- W2980238977 startingPage "420" @default.
- W2980238977 abstract "Most cardiovascular (CV)/stroke risk calculators using the integration of carotid ultrasound image-based phenotypes (CUSIP) with conventional risk factors (CRF) have shown improved risk stratification compared with either method. However such approaches have not yet leveraged the potential of machine learning (ML). Most intelligent ML strategies use follow-ups for the endpoints but are costly and time-intensive. We introduce an integrated ML system using stenosis as an endpoint for training and determine whether such a system can lead to superior performance compared with the conventional ML system.The ML-based algorithm consists of an offline and online system. The offline system extracts 47 features which comprised of 13 CRF and 34 CUSIP. Principal component analysis (PCA) was used to select the most significant features. These offline features were then trained using the event-equivalent gold standard (consisting of percentage stenosis) using a random forest (RF) classifier framework to generate training coefficients. The online system then transforms the PCA-based test features using offline trained coefficients to predict the risk labels on test subjects. The above ML system determines the area under the curve (AUC) using a 10-fold cross-validation paradigm. The above system so-called AtheroRisk-Integrated was compared against AtheroRisk-Conventional, where only 13 CRF were considered in a feature set.Left and right common carotid arteries of 202 Japanese patients (Toho University, Japan) were retrospectively examined to obtain 395 ultrasound scans. AtheroRisk-Integrated system [AUC =0.80, P<0.0001, 95% confidence interval (CI): 0.77 to 0.84] showed an improvement of ~18% against AtheroRisk-Conventional ML (AUC =0.68, P<0.0001, 95% CI: 0.64 to 0.72).ML-based integrated model with the event-equivalent gold standard as percentage stenosis is powerful and offers low cost and high performance CV/stroke risk assessment." @default.
- W2980238977 created "2019-10-18" @default.
- W2980238977 creator A5002084488 @default.
- W2980238977 creator A5002211637 @default.
- W2980238977 creator A5003199301 @default.
- W2980238977 creator A5005559379 @default.
- W2980238977 creator A5007341235 @default.
- W2980238977 creator A5013046023 @default.
- W2980238977 creator A5013180579 @default.
- W2980238977 creator A5013307219 @default.
- W2980238977 creator A5022910916 @default.
- W2980238977 creator A5026004870 @default.
- W2980238977 creator A5031798099 @default.
- W2980238977 creator A5039210540 @default.
- W2980238977 creator A5040260173 @default.
- W2980238977 creator A5050577606 @default.
- W2980238977 creator A5051048965 @default.
- W2980238977 creator A5058223820 @default.
- W2980238977 creator A5058789641 @default.
- W2980238977 creator A5059916379 @default.
- W2980238977 creator A5061702412 @default.
- W2980238977 creator A5071959897 @default.
- W2980238977 date "2019-10-01" @default.
- W2980238977 modified "2023-10-01" @default.
- W2980238977 title "A low-cost machine learning-based cardiovascular/stroke risk assessment system: integration of conventional factors with image phenotypes" @default.
- W2980238977 cites W1524700794 @default.
- W2980238977 cites W1581443256 @default.
- W2980238977 cites W1929045676 @default.
- W2980238977 cites W1966566681 @default.
- W2980238977 cites W1982392960 @default.
- W2980238977 cites W1991252586 @default.
- W2980238977 cites W1992894877 @default.
- W2980238977 cites W1998644680 @default.
- W2980238977 cites W2033401125 @default.
- W2980238977 cites W2036034025 @default.
- W2980238977 cites W2081789285 @default.
- W2980238977 cites W2106505662 @default.
- W2980238977 cites W2109061954 @default.
- W2980238977 cites W2127288185 @default.
- W2980238977 cites W2129837832 @default.
- W2980238977 cites W2133211347 @default.
- W2980238977 cites W2139282876 @default.
- W2980238977 cites W2147926183 @default.
- W2980238977 cites W2148092884 @default.
- W2980238977 cites W2156593520 @default.
- W2980238977 cites W2163729431 @default.
- W2980238977 cites W2168536722 @default.
- W2980238977 cites W2170776558 @default.
- W2980238977 cites W2206529707 @default.
- W2980238977 cites W2273474388 @default.
- W2980238977 cites W2277070532 @default.
- W2980238977 cites W2290121903 @default.
- W2980238977 cites W2556985958 @default.
- W2980238977 cites W2560269372 @default.
- W2980238977 cites W2587172334 @default.
- W2980238977 cites W2736101782 @default.
- W2980238977 cites W2742585132 @default.
- W2980238977 cites W2768267412 @default.
- W2980238977 cites W2798421489 @default.
- W2980238977 cites W2800206746 @default.
- W2980238977 cites W2803702882 @default.
- W2980238977 cites W2804004364 @default.
- W2980238977 cites W288156456 @default.
- W2980238977 cites W2883424470 @default.
- W2980238977 cites W2899921784 @default.
- W2980238977 cites W2908561509 @default.
- W2980238977 cites W2910953828 @default.
- W2980238977 cites W2936250992 @default.
- W2980238977 cites W2940017569 @default.
- W2980238977 cites W2940042705 @default.
- W2980238977 cites W2942696628 @default.
- W2980238977 cites W2990290481 @default.
- W2980238977 cites W4210542211 @default.
- W2980238977 doi "https://doi.org/10.21037/cdt.2019.09.03" @default.
- W2980238977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6837917" @default.
- W2980238977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31737514" @default.
- W2980238977 hasPublicationYear "2019" @default.
- W2980238977 type Work @default.
- W2980238977 sameAs 2980238977 @default.
- W2980238977 citedByCount "48" @default.
- W2980238977 countsByYear W29802389772020 @default.
- W2980238977 countsByYear W29802389772021 @default.
- W2980238977 countsByYear W29802389772022 @default.
- W2980238977 countsByYear W29802389772023 @default.
- W2980238977 crossrefType "journal-article" @default.
- W2980238977 hasAuthorship W2980238977A5002084488 @default.
- W2980238977 hasAuthorship W2980238977A5002211637 @default.
- W2980238977 hasAuthorship W2980238977A5003199301 @default.
- W2980238977 hasAuthorship W2980238977A5005559379 @default.
- W2980238977 hasAuthorship W2980238977A5007341235 @default.
- W2980238977 hasAuthorship W2980238977A5013046023 @default.
- W2980238977 hasAuthorship W2980238977A5013180579 @default.
- W2980238977 hasAuthorship W2980238977A5013307219 @default.
- W2980238977 hasAuthorship W2980238977A5022910916 @default.
- W2980238977 hasAuthorship W2980238977A5026004870 @default.
- W2980238977 hasAuthorship W2980238977A5031798099 @default.
- W2980238977 hasAuthorship W2980238977A5039210540 @default.
- W2980238977 hasAuthorship W2980238977A5040260173 @default.