Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980268510> ?p ?o ?g. }
- W2980268510 endingPage "148827" @default.
- W2980268510 startingPage "148814" @default.
- W2980268510 abstract "Many methods have been proposed to detect communities/modules in various networks such as biological molecular networks and disease networks, while optimizing statistical measures for community structures is one of the most popular ways for community detection. Surprise, which is a statistical measure of interest for community detection, has good performance in many networks, but it still encounters the resolution limit in some cases and it is hard to be optimized due to its strong nonlinearity. Here, we discussed the resolution limit of Surprise by a phase diagram in community-partition transition, and then proposed an improved algorithm for Surprise optimization by introducing three effective strategies: a pre-processing of topological structure based on local random walks (Pre_TS), a pre-processing of community partition (Pre_CS), and a post-processing of community partition (Post_CS). By a series of experimental tests in various networks, we show that Pre_TS can effectively enhance the resolution of Surprise, Pre_CS and Post_CS can improve the optimization performance in different aspects, and as expected, the combination of these strategies can more effectively enhance the ability of Surprise to detect communities in complex networks. Finally, we displayed the effectiveness of the improved algorithm for Surprise optimization in several real-world networks, and applied the algorithm to the analysis of disease-related networks in computational biology." @default.
- W2980268510 created "2019-10-18" @default.
- W2980268510 creator A5031150094 @default.
- W2980268510 creator A5033436760 @default.
- W2980268510 creator A5037849865 @default.
- W2980268510 creator A5042995511 @default.
- W2980268510 creator A5042995515 @default.
- W2980268510 creator A5046328933 @default.
- W2980268510 creator A5049791582 @default.
- W2980268510 creator A5073390361 @default.
- W2980268510 creator A5075576129 @default.
- W2980268510 creator A5081533893 @default.
- W2980268510 date "2019-01-01" @default.
- W2980268510 modified "2023-10-18" @default.
- W2980268510 title "An Effective Algorithm for Optimizing Surprise in Network Community Detection" @default.
- W2980268510 cites W1871641673 @default.
- W2980268510 cites W1971421925 @default.
- W2980268510 cites W1980971889 @default.
- W2980268510 cites W1984994038 @default.
- W2980268510 cites W1985625141 @default.
- W2980268510 cites W2009784799 @default.
- W2980268510 cites W2011843642 @default.
- W2980268510 cites W2014259951 @default.
- W2980268510 cites W2023655578 @default.
- W2980268510 cites W2024722675 @default.
- W2980268510 cites W2025543856 @default.
- W2980268510 cites W2029855260 @default.
- W2980268510 cites W2041073071 @default.
- W2980268510 cites W2044988896 @default.
- W2980268510 cites W2056782561 @default.
- W2980268510 cites W2061099285 @default.
- W2980268510 cites W2080909935 @default.
- W2980268510 cites W2087544816 @default.
- W2980268510 cites W2094234423 @default.
- W2980268510 cites W2095293504 @default.
- W2980268510 cites W2101571519 @default.
- W2980268510 cites W2104240253 @default.
- W2980268510 cites W2110553827 @default.
- W2980268510 cites W2110620844 @default.
- W2980268510 cites W2112090702 @default.
- W2980268510 cites W2127048411 @default.
- W2980268510 cites W2128366083 @default.
- W2980268510 cites W2131681506 @default.
- W2980268510 cites W2142783542 @default.
- W2980268510 cites W2146046001 @default.
- W2980268510 cites W2201557959 @default.
- W2980268510 cites W2204962579 @default.
- W2980268510 cites W2209225614 @default.
- W2980268510 cites W2235017635 @default.
- W2980268510 cites W2238145932 @default.
- W2980268510 cites W2279005051 @default.
- W2980268510 cites W2291217097 @default.
- W2980268510 cites W2325455737 @default.
- W2980268510 cites W2332279165 @default.
- W2980268510 cites W2376618091 @default.
- W2980268510 cites W2438572806 @default.
- W2980268510 cites W2467745878 @default.
- W2980268510 cites W2519496013 @default.
- W2980268510 cites W2566534050 @default.
- W2980268510 cites W2757055972 @default.
- W2980268510 cites W2791975541 @default.
- W2980268510 cites W2803897401 @default.
- W2980268510 cites W2884268647 @default.
- W2980268510 cites W2897625942 @default.
- W2980268510 cites W2898691125 @default.
- W2980268510 cites W2900045504 @default.
- W2980268510 cites W2910698030 @default.
- W2980268510 cites W2965200854 @default.
- W2980268510 cites W2970771711 @default.
- W2980268510 cites W3098716471 @default.
- W2980268510 cites W3100069540 @default.
- W2980268510 cites W3100151116 @default.
- W2980268510 cites W3100398599 @default.
- W2980268510 cites W3100698234 @default.
- W2980268510 cites W3101373936 @default.
- W2980268510 cites W3103450198 @default.
- W2980268510 cites W3125134415 @default.
- W2980268510 doi "https://doi.org/10.1109/access.2019.2946080" @default.
- W2980268510 hasPublicationYear "2019" @default.
- W2980268510 type Work @default.
- W2980268510 sameAs 2980268510 @default.
- W2980268510 citedByCount "7" @default.
- W2980268510 countsByYear W29802685102020 @default.
- W2980268510 countsByYear W29802685102021 @default.
- W2980268510 countsByYear W29802685102022 @default.
- W2980268510 countsByYear W29802685102023 @default.
- W2980268510 crossrefType "journal-article" @default.
- W2980268510 hasAuthorship W2980268510A5031150094 @default.
- W2980268510 hasAuthorship W2980268510A5033436760 @default.
- W2980268510 hasAuthorship W2980268510A5037849865 @default.
- W2980268510 hasAuthorship W2980268510A5042995511 @default.
- W2980268510 hasAuthorship W2980268510A5042995515 @default.
- W2980268510 hasAuthorship W2980268510A5046328933 @default.
- W2980268510 hasAuthorship W2980268510A5049791582 @default.
- W2980268510 hasAuthorship W2980268510A5073390361 @default.
- W2980268510 hasAuthorship W2980268510A5075576129 @default.
- W2980268510 hasAuthorship W2980268510A5081533893 @default.
- W2980268510 hasBestOaLocation W29802685101 @default.