Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980272797> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2980272797 endingPage "73" @default.
- W2980272797 startingPage "66" @default.
- W2980272797 abstract "To automate the process of segmenting an anatomy of interest, we can learn a model from previously annotated data. The learning-based approach uses annotations to train a model that tries to emulate the expert labeling on a new data set. While tremendous progress has been made using such approaches, labeling of medical images remains a time-consuming and expensive task. In this paper, we evaluate the utility of extreme points in learning to segment. Specifically, we propose a novel approach to compute a confidence map from extreme points that quantitatively encodes the priors derived from extreme points. We use the confidence map as a cue to train a deep neural network based on ResNet-101 and PSP module to develop a class-agnostic segmentation model that outperforms state-of-the-art method that employs extreme points as a cue. Further, we evaluate a realistic use-case by using our model to generate training data for supervised learning (U-Net) and observed that U-Net performs comparably when trained with either the generated data or the ground truth data. These findings suggest that models trained using cues can be used to generate reliable training data. Our code is publicly available ( https://github.com/ahmedshahin9/AssistedAnnotator )." @default.
- W2980272797 created "2019-10-18" @default.
- W2980272797 creator A5010804106 @default.
- W2980272797 creator A5023184215 @default.
- W2980272797 creator A5053260141 @default.
- W2980272797 creator A5062283559 @default.
- W2980272797 creator A5082634513 @default.
- W2980272797 date "2019-01-01" @default.
- W2980272797 modified "2023-10-06" @default.
- W2980272797 title "Extreme Points Derived Confidence Map as a Cue for Class-Agnostic Interactive Segmentation Using Deep Neural Network" @default.
- W2980272797 cites W1422227952 @default.
- W2980272797 cites W1901129140 @default.
- W2980272797 cites W2194775991 @default.
- W2980272797 cites W2396622801 @default.
- W2980272797 cites W2412782625 @default.
- W2980272797 cites W2560023338 @default.
- W2980272797 cites W2696396770 @default.
- W2980272797 cites W2769833683 @default.
- W2980272797 cites W2810849947 @default.
- W2980272797 cites W2963072537 @default.
- W2980272797 cites W4248635988 @default.
- W2980272797 doi "https://doi.org/10.1007/978-3-030-32245-8_8" @default.
- W2980272797 hasPublicationYear "2019" @default.
- W2980272797 type Work @default.
- W2980272797 sameAs 2980272797 @default.
- W2980272797 citedByCount "8" @default.
- W2980272797 countsByYear W29802727972020 @default.
- W2980272797 countsByYear W29802727972021 @default.
- W2980272797 countsByYear W29802727972022 @default.
- W2980272797 crossrefType "book-chapter" @default.
- W2980272797 hasAuthorship W2980272797A5010804106 @default.
- W2980272797 hasAuthorship W2980272797A5023184215 @default.
- W2980272797 hasAuthorship W2980272797A5053260141 @default.
- W2980272797 hasAuthorship W2980272797A5062283559 @default.
- W2980272797 hasAuthorship W2980272797A5082634513 @default.
- W2980272797 hasConcept C108583219 @default.
- W2980272797 hasConcept C111919701 @default.
- W2980272797 hasConcept C119857082 @default.
- W2980272797 hasConcept C125308379 @default.
- W2980272797 hasConcept C144133560 @default.
- W2980272797 hasConcept C146849305 @default.
- W2980272797 hasConcept C153180895 @default.
- W2980272797 hasConcept C154945302 @default.
- W2980272797 hasConcept C162324750 @default.
- W2980272797 hasConcept C162853370 @default.
- W2980272797 hasConcept C177264268 @default.
- W2980272797 hasConcept C187736073 @default.
- W2980272797 hasConcept C199360897 @default.
- W2980272797 hasConcept C2776760102 @default.
- W2980272797 hasConcept C2777212361 @default.
- W2980272797 hasConcept C2780451532 @default.
- W2980272797 hasConcept C41008148 @default.
- W2980272797 hasConcept C50644808 @default.
- W2980272797 hasConcept C58489278 @default.
- W2980272797 hasConcept C89600930 @default.
- W2980272797 hasConcept C98045186 @default.
- W2980272797 hasConceptScore W2980272797C108583219 @default.
- W2980272797 hasConceptScore W2980272797C111919701 @default.
- W2980272797 hasConceptScore W2980272797C119857082 @default.
- W2980272797 hasConceptScore W2980272797C125308379 @default.
- W2980272797 hasConceptScore W2980272797C144133560 @default.
- W2980272797 hasConceptScore W2980272797C146849305 @default.
- W2980272797 hasConceptScore W2980272797C153180895 @default.
- W2980272797 hasConceptScore W2980272797C154945302 @default.
- W2980272797 hasConceptScore W2980272797C162324750 @default.
- W2980272797 hasConceptScore W2980272797C162853370 @default.
- W2980272797 hasConceptScore W2980272797C177264268 @default.
- W2980272797 hasConceptScore W2980272797C187736073 @default.
- W2980272797 hasConceptScore W2980272797C199360897 @default.
- W2980272797 hasConceptScore W2980272797C2776760102 @default.
- W2980272797 hasConceptScore W2980272797C2777212361 @default.
- W2980272797 hasConceptScore W2980272797C2780451532 @default.
- W2980272797 hasConceptScore W2980272797C41008148 @default.
- W2980272797 hasConceptScore W2980272797C50644808 @default.
- W2980272797 hasConceptScore W2980272797C58489278 @default.
- W2980272797 hasConceptScore W2980272797C89600930 @default.
- W2980272797 hasConceptScore W2980272797C98045186 @default.
- W2980272797 hasLocation W29802727971 @default.
- W2980272797 hasOpenAccess W2980272797 @default.
- W2980272797 hasPrimaryLocation W29802727971 @default.
- W2980272797 hasRelatedWork W2283021311 @default.
- W2980272797 hasRelatedWork W2790662084 @default.
- W2980272797 hasRelatedWork W4223943233 @default.
- W2980272797 hasRelatedWork W4225161397 @default.
- W2980272797 hasRelatedWork W4295101706 @default.
- W2980272797 hasRelatedWork W4312200629 @default.
- W2980272797 hasRelatedWork W4360585206 @default.
- W2980272797 hasRelatedWork W4364306694 @default.
- W2980272797 hasRelatedWork W4380075502 @default.
- W2980272797 hasRelatedWork W4380086463 @default.
- W2980272797 isParatext "false" @default.
- W2980272797 isRetracted "false" @default.
- W2980272797 magId "2980272797" @default.
- W2980272797 workType "book-chapter" @default.