Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980328141> ?p ?o ?g. }
- W2980328141 abstract "Abstract More than 300 million people worldwide experience depression; annually, ~800,000 people die by suicide. Unfortunately, conventional interview-based diagnosis is insufficient to accurately predict a psychiatric status. We developed machine learning models to predict depression and suicide risk using blood methylome and transcriptome data from 56 suicide attempters (SAs), 39 patients with major depressive disorder (MDD), and 87 healthy controls. Our random forest classifiers showed accuracies of 92.6% in distinguishing SAs from MDD patients, 87.3% in distinguishing MDD patients from controls, and 86.7% in distinguishing SAs from controls. We also developed regression models for predicting psychiatric scales with R 2 values of 0.961 and 0.943 for Hamilton Rating Scale for Depression–17 and Scale for Suicide Ideation, respectively. Multi-omics data were used to construct psychiatric status prediction models for improved mental health treatment." @default.
- W2980328141 created "2019-10-25" @default.
- W2980328141 creator A5001743376 @default.
- W2980328141 creator A5004776744 @default.
- W2980328141 creator A5005301004 @default.
- W2980328141 creator A5007773117 @default.
- W2980328141 creator A5014908889 @default.
- W2980328141 creator A5017840845 @default.
- W2980328141 creator A5029604636 @default.
- W2980328141 creator A5039236715 @default.
- W2980328141 creator A5040970335 @default.
- W2980328141 creator A5043167232 @default.
- W2980328141 creator A5046520935 @default.
- W2980328141 creator A5054489042 @default.
- W2980328141 creator A5054630096 @default.
- W2980328141 creator A5058342580 @default.
- W2980328141 creator A5066209897 @default.
- W2980328141 creator A5066534237 @default.
- W2980328141 creator A5070693100 @default.
- W2980328141 creator A5073287023 @default.
- W2980328141 creator A5078605896 @default.
- W2980328141 creator A5089131007 @default.
- W2980328141 date "2019-10-17" @default.
- W2980328141 modified "2023-10-15" @default.
- W2980328141 title "Depression and suicide risk prediction models using blood-derived multi-omics data" @default.
- W2980328141 cites W1968458420 @default.
- W2980328141 cites W1987836975 @default.
- W2980328141 cites W1996109785 @default.
- W2980328141 cites W1999574084 @default.
- W2980328141 cites W2020113570 @default.
- W2980328141 cites W2033428561 @default.
- W2980328141 cites W2060907896 @default.
- W2980328141 cites W2061381094 @default.
- W2980328141 cites W2076363539 @default.
- W2980328141 cites W2093990648 @default.
- W2980328141 cites W2121247237 @default.
- W2980328141 cites W2126144698 @default.
- W2980328141 cites W2127119869 @default.
- W2980328141 cites W2129424472 @default.
- W2980328141 cites W2131374955 @default.
- W2980328141 cites W2134766766 @default.
- W2980328141 cites W2143091712 @default.
- W2980328141 cites W2148740103 @default.
- W2980328141 cites W2150194502 @default.
- W2980328141 cites W2151471104 @default.
- W2980328141 cites W2158217645 @default.
- W2980328141 cites W2166279530 @default.
- W2980328141 cites W2169353806 @default.
- W2980328141 cites W2179438025 @default.
- W2980328141 cites W2256732880 @default.
- W2980328141 cites W2408339852 @default.
- W2980328141 cites W2546898428 @default.
- W2980328141 cites W2602359721 @default.
- W2980328141 cites W2605512411 @default.
- W2980328141 cites W2731637345 @default.
- W2980328141 cites W2766099988 @default.
- W2980328141 cites W2892587974 @default.
- W2980328141 cites W2921144944 @default.
- W2980328141 cites W2951209146 @default.
- W2980328141 cites W4211120965 @default.
- W2980328141 cites W4237242764 @default.
- W2980328141 cites W4240718682 @default.
- W2980328141 doi "https://doi.org/10.1038/s41398-019-0595-2" @default.
- W2980328141 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6797735" @default.
- W2980328141 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31624227" @default.
- W2980328141 hasPublicationYear "2019" @default.
- W2980328141 type Work @default.
- W2980328141 sameAs 2980328141 @default.
- W2980328141 citedByCount "30" @default.
- W2980328141 countsByYear W29803281412020 @default.
- W2980328141 countsByYear W29803281412021 @default.
- W2980328141 countsByYear W29803281412022 @default.
- W2980328141 countsByYear W29803281412023 @default.
- W2980328141 crossrefType "journal-article" @default.
- W2980328141 hasAuthorship W2980328141A5001743376 @default.
- W2980328141 hasAuthorship W2980328141A5004776744 @default.
- W2980328141 hasAuthorship W2980328141A5005301004 @default.
- W2980328141 hasAuthorship W2980328141A5007773117 @default.
- W2980328141 hasAuthorship W2980328141A5014908889 @default.
- W2980328141 hasAuthorship W2980328141A5017840845 @default.
- W2980328141 hasAuthorship W2980328141A5029604636 @default.
- W2980328141 hasAuthorship W2980328141A5039236715 @default.
- W2980328141 hasAuthorship W2980328141A5040970335 @default.
- W2980328141 hasAuthorship W2980328141A5043167232 @default.
- W2980328141 hasAuthorship W2980328141A5046520935 @default.
- W2980328141 hasAuthorship W2980328141A5054489042 @default.
- W2980328141 hasAuthorship W2980328141A5054630096 @default.
- W2980328141 hasAuthorship W2980328141A5058342580 @default.
- W2980328141 hasAuthorship W2980328141A5066209897 @default.
- W2980328141 hasAuthorship W2980328141A5066534237 @default.
- W2980328141 hasAuthorship W2980328141A5070693100 @default.
- W2980328141 hasAuthorship W2980328141A5073287023 @default.
- W2980328141 hasAuthorship W2980328141A5078605896 @default.
- W2980328141 hasAuthorship W2980328141A5089131007 @default.
- W2980328141 hasBestOaLocation W29803281411 @default.
- W2980328141 hasConcept C118552586 @default.
- W2980328141 hasConcept C119857082 @default.
- W2980328141 hasConcept C138496976 @default.
- W2980328141 hasConcept C139719470 @default.
- W2980328141 hasConcept C15744967 @default.