Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980329246> ?p ?o ?g. }
- W2980329246 endingPage "153140" @default.
- W2980329246 startingPage "153123" @default.
- W2980329246 abstract "Systems based on fog computing produce massive amounts of data; accordingly, an increasing number of fog computing apps and services are emerging. In addition, machine learning (ML), which is an essential area, has gained considerable progress in various research domains, including robotics, neuromorphic computing, computer graphics, natural language processing (NLP), decision-making, and speech recognition. Several researches have been proposed that study how to employ ML to settle fog computing problems. In recent years, an increasing trend has been observed in adopting ML to enhance fog computing applications and provide fog services, like efficient resource management, security, mitigating latency and energy consumption, and traffic modeling. Based on our understanding and knowledge, there is no study has yet investigated the role of ML in the fog computing paradigm. Accordingly, the current research shed light on presenting an overview of the ML functions in fog computing area. The ML application for fog computing become strong end-user and high layers services to gain profound analytics and more smart responses for needed tasks. We present a comprehensive review to underline the latest improvements in ML techniques that are associated with three aspects of fog computing: management of resource, accuracy, and security. The role of ML in edge computing is also highlighted. Moreover, other perspectives related to the ML domain, such as types of application support, technique, and dataset are provided. Lastly, research challenges and open issues are discussed." @default.
- W2980329246 created "2019-10-25" @default.
- W2980329246 creator A5002277585 @default.
- W2980329246 creator A5007388652 @default.
- W2980329246 creator A5016511172 @default.
- W2980329246 creator A5027184951 @default.
- W2980329246 creator A5049531072 @default.
- W2980329246 creator A5049763844 @default.
- W2980329246 creator A5087286412 @default.
- W2980329246 creator A5089923255 @default.
- W2980329246 date "2019-01-01" @default.
- W2980329246 modified "2023-10-16" @default.
- W2980329246 title "A Review of Fog Computing and Machine Learning: Concepts, Applications, Challenges, and Open Issues" @default.
- W2980329246 cites W1983786968 @default.
- W2980329246 cites W1987221145 @default.
- W2980329246 cites W2000122588 @default.
- W2980329246 cites W2005816059 @default.
- W2980329246 cites W2025001960 @default.
- W2980329246 cites W2077217970 @default.
- W2980329246 cites W2114623221 @default.
- W2980329246 cites W2133990480 @default.
- W2980329246 cites W2154126105 @default.
- W2980329246 cites W2159588611 @default.
- W2980329246 cites W2407961458 @default.
- W2980329246 cites W2416799949 @default.
- W2980329246 cites W2515329741 @default.
- W2980329246 cites W2517404637 @default.
- W2980329246 cites W2549687423 @default.
- W2980329246 cites W2554264368 @default.
- W2980329246 cites W2568658310 @default.
- W2980329246 cites W2585896630 @default.
- W2980329246 cites W2586392408 @default.
- W2980329246 cites W2594536436 @default.
- W2980329246 cites W2594857399 @default.
- W2980329246 cites W2596492958 @default.
- W2980329246 cites W2605943641 @default.
- W2980329246 cites W2617931713 @default.
- W2980329246 cites W2619568410 @default.
- W2980329246 cites W2626046334 @default.
- W2980329246 cites W2627005429 @default.
- W2980329246 cites W2733075960 @default.
- W2980329246 cites W2735793369 @default.
- W2980329246 cites W2743843812 @default.
- W2980329246 cites W2747548784 @default.
- W2980329246 cites W2753672491 @default.
- W2980329246 cites W2759910885 @default.
- W2980329246 cites W2765384991 @default.
- W2980329246 cites W2765605909 @default.
- W2980329246 cites W2772386872 @default.
- W2980329246 cites W2775411955 @default.
- W2980329246 cites W2783034914 @default.
- W2980329246 cites W2783366320 @default.
- W2980329246 cites W2786075294 @default.
- W2980329246 cites W2787759512 @default.
- W2980329246 cites W2789761343 @default.
- W2980329246 cites W2790891361 @default.
- W2980329246 cites W2792850657 @default.
- W2980329246 cites W2794901822 @default.
- W2980329246 cites W2802870851 @default.
- W2980329246 cites W2803864529 @default.
- W2980329246 cites W2804094127 @default.
- W2980329246 cites W2805454539 @default.
- W2980329246 cites W2808064527 @default.
- W2980329246 cites W2809329893 @default.
- W2980329246 cites W2809963016 @default.
- W2980329246 cites W2810075605 @default.
- W2980329246 cites W2810719755 @default.
- W2980329246 cites W2810730691 @default.
- W2980329246 cites W2810749629 @default.
- W2980329246 cites W2844394752 @default.
- W2980329246 cites W2884532903 @default.
- W2980329246 cites W2886310602 @default.
- W2980329246 cites W2886899600 @default.
- W2980329246 cites W2887221547 @default.
- W2980329246 cites W2887506070 @default.
- W2980329246 cites W2889887438 @default.
- W2980329246 cites W2890782911 @default.
- W2980329246 cites W2897460995 @default.
- W2980329246 cites W2897596343 @default.
- W2980329246 cites W2898485069 @default.
- W2980329246 cites W2900708591 @default.
- W2980329246 cites W2900845395 @default.
- W2980329246 cites W2906253005 @default.
- W2980329246 cites W2910612999 @default.
- W2980329246 cites W2914470820 @default.
- W2980329246 cites W2937471939 @default.
- W2980329246 cites W2962790500 @default.
- W2980329246 cites W2963322404 @default.
- W2980329246 cites W2963953220 @default.
- W2980329246 cites W3100857292 @default.
- W2980329246 cites W3204105474 @default.
- W2980329246 doi "https://doi.org/10.1109/access.2019.2947542" @default.
- W2980329246 hasPublicationYear "2019" @default.
- W2980329246 type Work @default.
- W2980329246 sameAs 2980329246 @default.
- W2980329246 citedByCount "120" @default.
- W2980329246 countsByYear W29803292462019 @default.
- W2980329246 countsByYear W29803292462020 @default.