Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980453815> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2980453815 endingPage "440" @default.
- W2980453815 startingPage "436" @default.
- W2980453815 abstract "Objective To study the application of autoregressive integrated moving average (ARIMA) model to predict the monthly reported malaria cases in China, so as to provide a reference for prevention and control of malaria. Methods SPSS 24.0 software was used to construct the ARIMA models based on the monthly reported malaria cases of the time series of 20062015 and 2011-2015, respectively. The data of malaria cases from January to December, 2016 were used as validation data to compare the accuracy of the two ARIMA models. Results The models of the monthly reported cases of malaria in China were ARIMA (2, 1, 1) (1, 1, 0)12 and ARIMA (1, 0, 0) (1, 1, 0)12 respectively. The comparison between the predictions of the two models and actual situation of malaria cases showed that the ARIMA model based on the data of 2011-2015 had a higher accuracy of forecasting than the model based on the data of 2006-2015 had. Conclusion The establishment and prediction of ARIMA model is a dynamic process, which needs to be adjusted unceasingly according to the accumulated data, and in addition, the major changes of epidemic characteristics of infectious diseases must be considered.[摘要]目的 采用自回归移动平均 (Autoregressive integrated moving average, ARIMA)模型对全国 (不含港澳台地区)疟疾月报告病例数进行预测研究, 为疟疾的预防控制提供参考依据。方法 通过SPSS 24.0软件, 建立两个时间序列, 分别为2006–2015年和2011–2015年全国疟疾月报告病例数的时间序列, 并建立最优ARIMA模型, 以2016年1–12月全国疟疾月报告病例数进行验证。结果 2006–2015、2011–2015年两个不同时间序列建立的全国疟疾月报告病例数模型分别为ARIMA (2, 1, 1) (1, 1, 0)12和ARIMA (1, 0, 0) (1, 1, 0)12, 分别对2016年1–12月数据进行预测, 基于2011–2015年数据建立的ARIMA模型的预测误差更小。结论 模型的建立和预测应用是动态过程, 需要不断根据积累的数据进行调整, 从而提高预测精度, 但同时要充分考虑传染病流行特征的重大变化等其他因素。 [关键词]疟疾; 自回归移动平均模型; 预测." @default.
- W2980453815 created "2019-10-25" @default.
- W2980453815 creator A5009316444 @default.
- W2980453815 creator A5018882957 @default.
- W2980453815 creator A5021669608 @default.
- W2980453815 creator A5022204725 @default.
- W2980453815 creator A5026351882 @default.
- W2980453815 creator A5045781535 @default.
- W2980453815 creator A5045979894 @default.
- W2980453815 creator A5048700526 @default.
- W2980453815 creator A5065720669 @default.
- W2980453815 creator A5075220535 @default.
- W2980453815 creator A5079919147 @default.
- W2980453815 date "2017-08-15" @default.
- W2980453815 modified "2023-09-27" @default.
- W2980453815 title "[Application of ARIMA model to predict number of malaria cases in China]." @default.
- W2980453815 doi "https://doi.org/10.16250/j.32.1374.2017088" @default.
- W2980453815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29508575" @default.
- W2980453815 hasPublicationYear "2017" @default.
- W2980453815 type Work @default.
- W2980453815 sameAs 2980453815 @default.
- W2980453815 citedByCount "1" @default.
- W2980453815 countsByYear W29804538152022 @default.
- W2980453815 crossrefType "journal-article" @default.
- W2980453815 hasAuthorship W2980453815A5009316444 @default.
- W2980453815 hasAuthorship W2980453815A5018882957 @default.
- W2980453815 hasAuthorship W2980453815A5021669608 @default.
- W2980453815 hasAuthorship W2980453815A5022204725 @default.
- W2980453815 hasAuthorship W2980453815A5026351882 @default.
- W2980453815 hasAuthorship W2980453815A5045781535 @default.
- W2980453815 hasAuthorship W2980453815A5045979894 @default.
- W2980453815 hasAuthorship W2980453815A5048700526 @default.
- W2980453815 hasAuthorship W2980453815A5065720669 @default.
- W2980453815 hasAuthorship W2980453815A5075220535 @default.
- W2980453815 hasAuthorship W2980453815A5079919147 @default.
- W2980453815 hasConcept C105795698 @default.
- W2980453815 hasConcept C149782125 @default.
- W2980453815 hasConcept C151406439 @default.
- W2980453815 hasConcept C166957645 @default.
- W2980453815 hasConcept C175706884 @default.
- W2980453815 hasConcept C191935318 @default.
- W2980453815 hasConcept C203014093 @default.
- W2980453815 hasConcept C205649164 @default.
- W2980453815 hasConcept C24338571 @default.
- W2980453815 hasConcept C2778048844 @default.
- W2980453815 hasConcept C33923547 @default.
- W2980453815 hasConcept C41008148 @default.
- W2980453815 hasConcept C71924100 @default.
- W2980453815 hasConceptScore W2980453815C105795698 @default.
- W2980453815 hasConceptScore W2980453815C149782125 @default.
- W2980453815 hasConceptScore W2980453815C151406439 @default.
- W2980453815 hasConceptScore W2980453815C166957645 @default.
- W2980453815 hasConceptScore W2980453815C175706884 @default.
- W2980453815 hasConceptScore W2980453815C191935318 @default.
- W2980453815 hasConceptScore W2980453815C203014093 @default.
- W2980453815 hasConceptScore W2980453815C205649164 @default.
- W2980453815 hasConceptScore W2980453815C24338571 @default.
- W2980453815 hasConceptScore W2980453815C2778048844 @default.
- W2980453815 hasConceptScore W2980453815C33923547 @default.
- W2980453815 hasConceptScore W2980453815C41008148 @default.
- W2980453815 hasConceptScore W2980453815C71924100 @default.
- W2980453815 hasIssue "4" @default.
- W2980453815 hasLocation W29804538151 @default.
- W2980453815 hasOpenAccess W2980453815 @default.
- W2980453815 hasPrimaryLocation W29804538151 @default.
- W2980453815 hasRelatedWork W2367775519 @default.
- W2980453815 hasRelatedWork W2536198861 @default.
- W2980453815 hasRelatedWork W2899564469 @default.
- W2980453815 hasRelatedWork W2906471315 @default.
- W2980453815 hasRelatedWork W2941742990 @default.
- W2980453815 hasRelatedWork W3130257129 @default.
- W2980453815 hasRelatedWork W3201591169 @default.
- W2980453815 hasRelatedWork W4206066123 @default.
- W2980453815 hasRelatedWork W4247202353 @default.
- W2980453815 hasRelatedWork W2188972998 @default.
- W2980453815 hasVolume "29" @default.
- W2980453815 isParatext "false" @default.
- W2980453815 isRetracted "false" @default.
- W2980453815 magId "2980453815" @default.
- W2980453815 workType "article" @default.