Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980455988> ?p ?o ?g. }
- W2980455988 abstract "In Cloud Computing model, users are charged according to the usage of resources and desired Quality of Service (QoS). Task scheduling algorithms are responsible for specifying adequate set of resources to execute user applications in the form of tasks, and schedule decisions of task scheduling algorithms are based on QoS requirements defined by the user. Task scheduling problem is an NP-Complete problem, due to the NP-Complete nature of task scheduling problems and huge search space presented by large scale problem instances, many of the existing solution algorithms incur high computational complexity and cannot effectively obtain global optimum solutions. Recently, Symbiotic Organisms Search (SOS) has been applied to various optimization problems and results obtained were found to be competitive with state-of-the-art metaheuristic algorithms. However, similar to the case other metaheuristic optimization algorithms, the efficiency of SOS algorithm deteriorates as the size of the search space increases. Moreover, SOS suffers from local optima entrapment and its static control parameters cannot maintain a balance between local and global search. In this study, Cooperative Coevolutionary Constrained Multiobjective Symbiotic Organisms Search (CC-CMSOS), Cooperative Coevolutionary Constrained Multi-objective Memetic Symbiotic Organisms Search (CC-CMMSOS), and Cooperative Coevolutionary Constrained Multi-objective Adaptive Benefit Factor Symbiotic Organisms Search (CC-CMABFSOS) algorithms are proposed to solve constrained multi-objective large scale task scheduling optimization problem on IaaS cloud computing environment. To address the issue of scalability, the concept of Cooperative Coevolutionary for enhancing SOS named CC-CMSOS make SOS more efficient for solving large scale task scheduling problems. CC-CMMSOS algorithm further improves the performance of SOS algorithm by hybridizing with Simulated Annealing (SA) to avoid entrapment in local optima for global convergence. Finally, CC-CMABFSOS algorithm adaptively turn SOS control parameters to balance the local and global search procedure for faster convergence speed. The performance of the proposed CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are evaluated on CloudSim simulator, using both standard workload traces and synthesized workloads for larger problem instances of up to 5000. Moreover, CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms are compared with multi-objective optimization algorithms, namely, EMS-C, ECMSMOO, and BOGA. The CC-CMSOS, CC-CMMSOS, and CC-CMABFSOS algorithms obtained significant improved optimal trade-offs between execution time (makespan) and financial cost (cost) while meeting deadline constraints with no computational overhead. The performance improvements obtained by the proposed algorithms in terms of hypervolume ranges from 8.72% to 37.95% across the workloads. Therefore, the proposed algorithms have potentials to improve the performance of QoS delivery." @default.
- W2980455988 created "2019-10-25" @default.
- W2980455988 creator A5003380721 @default.
- W2980455988 date "2017-07-01" @default.
- W2980455988 modified "2023-09-27" @default.
- W2980455988 title "Optimized task scheduling based on hybrid symbiotic organisms search algorithms for cloud computing environment" @default.
- W2980455988 cites W102954337 @default.
- W2980455988 cites W1120107613 @default.
- W2980455988 cites W140881687 @default.
- W2980455988 cites W146993857 @default.
- W2980455988 cites W147504074 @default.
- W2980455988 cites W1500125712 @default.
- W2980455988 cites W1500439404 @default.
- W2980455988 cites W1514075446 @default.
- W2980455988 cites W1522942524 @default.
- W2980455988 cites W1526455201 @default.
- W2980455988 cites W1527209622 @default.
- W2980455988 cites W1529883225 @default.
- W2980455988 cites W1537478891 @default.
- W2980455988 cites W1572130003 @default.
- W2980455988 cites W1575376687 @default.
- W2980455988 cites W1575758330 @default.
- W2980455988 cites W1595485794 @default.
- W2980455988 cites W160148704 @default.
- W2980455988 cites W16088600 @default.
- W2980455988 cites W1647567351 @default.
- W2980455988 cites W1725797639 @default.
- W2980455988 cites W1860410021 @default.
- W2980455988 cites W1873825498 @default.
- W2980455988 cites W1970275772 @default.
- W2980455988 cites W1972270941 @default.
- W2980455988 cites W1977149227 @default.
- W2980455988 cites W1977367431 @default.
- W2980455988 cites W1977943938 @default.
- W2980455988 cites W1978337930 @default.
- W2980455988 cites W1983947028 @default.
- W2980455988 cites W1986178474 @default.
- W2980455988 cites W1993949541 @default.
- W2980455988 cites W1998203213 @default.
- W2980455988 cites W2002629885 @default.
- W2980455988 cites W2002836673 @default.
- W2980455988 cites W2013944848 @default.
- W2980455988 cites W2014445347 @default.
- W2980455988 cites W2018198861 @default.
- W2980455988 cites W2024672209 @default.
- W2980455988 cites W2028629398 @default.
- W2980455988 cites W2032117087 @default.
- W2980455988 cites W2035978754 @default.
- W2980455988 cites W2042852274 @default.
- W2980455988 cites W2045050140 @default.
- W2980455988 cites W2045287414 @default.
- W2980455988 cites W2046235404 @default.
- W2980455988 cites W2047095174 @default.
- W2980455988 cites W2047114212 @default.
- W2980455988 cites W2053680206 @default.
- W2980455988 cites W2057392949 @default.
- W2980455988 cites W2063281062 @default.
- W2980455988 cites W2064124275 @default.
- W2980455988 cites W2065715425 @default.
- W2980455988 cites W2071121892 @default.
- W2980455988 cites W2080688323 @default.
- W2980455988 cites W2082555634 @default.
- W2980455988 cites W2085043026 @default.
- W2980455988 cites W2086622126 @default.
- W2980455988 cites W2088286936 @default.
- W2980455988 cites W2089081781 @default.
- W2980455988 cites W2091638274 @default.
- W2980455988 cites W2095930915 @default.
- W2980455988 cites W2098907614 @default.
- W2980455988 cites W2100297710 @default.
- W2980455988 cites W2101651025 @default.
- W2980455988 cites W2105307239 @default.
- W2980455988 cites W2107440268 @default.
- W2980455988 cites W2111129781 @default.
- W2980455988 cites W2112873047 @default.
- W2980455988 cites W2112967454 @default.
- W2980455988 cites W2114296561 @default.
- W2980455988 cites W2115495728 @default.
- W2980455988 cites W2116363350 @default.
- W2980455988 cites W2117232794 @default.
- W2980455988 cites W2117506634 @default.
- W2980455988 cites W2118044993 @default.
- W2980455988 cites W2121429049 @default.
- W2980455988 cites W2131646073 @default.
- W2980455988 cites W2136178789 @default.
- W2980455988 cites W2137340504 @default.
- W2980455988 cites W2140475702 @default.
- W2980455988 cites W2142801346 @default.
- W2980455988 cites W2143585163 @default.
- W2980455988 cites W2147573707 @default.
- W2980455988 cites W2147598193 @default.
- W2980455988 cites W2147740236 @default.
- W2980455988 cites W2148652008 @default.
- W2980455988 cites W2149557121 @default.
- W2980455988 cites W2154158105 @default.
- W2980455988 cites W2154401983 @default.
- W2980455988 cites W2154513453 @default.
- W2980455988 cites W2154766958 @default.
- W2980455988 cites W2155005783 @default.
- W2980455988 cites W2156262512 @default.