Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980456669> ?p ?o ?g. }
- W2980456669 abstract "Generative modeling is a flavor of machine learning with applications ranging from computer vision to chemical design. It is expected to be one of the techniques most suited to take advantage of the additional resources provided by near-term quantum computers. We implement a data-driven quantum circuit training algorithm on the canonical Bars-and-Stripes data set using a quantum-classical hybrid machine. The training proceeds by running parameterized circuits on a trapped ion quantum computer, and feeding the results to a classical optimizer. We apply two separate strategies, Particle Swarm and Bayesian optimization to this task. We show that the convergence of the quantum circuit to the target distribution depends critically on both the quantum hardware and classical optimization strategy. Our study represents the first successful training of a high-dimensional universal quantum circuit, and highlights the promise and challenges associated with hybrid learning schemes." @default.
- W2980456669 created "2019-10-25" @default.
- W2980456669 creator A5005759724 @default.
- W2980456669 creator A5016002975 @default.
- W2980456669 creator A5019607836 @default.
- W2980456669 creator A5021964499 @default.
- W2980456669 creator A5024135704 @default.
- W2980456669 creator A5025251513 @default.
- W2980456669 creator A5031060462 @default.
- W2980456669 creator A5047992509 @default.
- W2980456669 creator A5048137524 @default.
- W2980456669 creator A5057723883 @default.
- W2980456669 creator A5082678604 @default.
- W2980456669 creator A5087226580 @default.
- W2980456669 creator A5090643817 @default.
- W2980456669 date "2019-10-04" @default.
- W2980456669 modified "2023-10-18" @default.
- W2980456669 title "Training of quantum circuits on a hybrid quantum computer" @default.
- W2980456669 cites W1502922572 @default.
- W2980456669 cites W1965555277 @default.
- W2980456669 cites W1972637202 @default.
- W2980456669 cites W2015172195 @default.
- W2980456669 cites W2020777009 @default.
- W2980456669 cites W2061402744 @default.
- W2980456669 cites W2082566426 @default.
- W2980456669 cites W2093189259 @default.
- W2980456669 cites W2161685427 @default.
- W2980456669 cites W2257937122 @default.
- W2980456669 cites W2415710521 @default.
- W2980456669 cites W2755255888 @default.
- W2980456669 cites W2781738013 @default.
- W2980456669 cites W2784994528 @default.
- W2980456669 cites W2794444783 @default.
- W2980456669 cites W2797767079 @default.
- W2980456669 cites W2805441291 @default.
- W2980456669 cites W2903891684 @default.
- W2980456669 cites W2924182316 @default.
- W2980456669 cites W2950205552 @default.
- W2980456669 cites W2962793481 @default.
- W2980456669 cites W2963223306 @default.
- W2980456669 cites W3097990818 @default.
- W2980456669 cites W3098269892 @default.
- W2980456669 cites W3106349779 @default.
- W2980456669 cites W4238746485 @default.
- W2980456669 doi "https://doi.org/10.1126/sciadv.aaw9918" @default.
- W2980456669 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6799983" @default.
- W2980456669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31667342" @default.
- W2980456669 hasPublicationYear "2019" @default.
- W2980456669 type Work @default.
- W2980456669 sameAs 2980456669 @default.
- W2980456669 citedByCount "141" @default.
- W2980456669 countsByYear W29804566692019 @default.
- W2980456669 countsByYear W29804566692020 @default.
- W2980456669 countsByYear W29804566692021 @default.
- W2980456669 countsByYear W29804566692022 @default.
- W2980456669 countsByYear W29804566692023 @default.
- W2980456669 crossrefType "journal-article" @default.
- W2980456669 hasAuthorship W2980456669A5005759724 @default.
- W2980456669 hasAuthorship W2980456669A5016002975 @default.
- W2980456669 hasAuthorship W2980456669A5019607836 @default.
- W2980456669 hasAuthorship W2980456669A5021964499 @default.
- W2980456669 hasAuthorship W2980456669A5024135704 @default.
- W2980456669 hasAuthorship W2980456669A5025251513 @default.
- W2980456669 hasAuthorship W2980456669A5031060462 @default.
- W2980456669 hasAuthorship W2980456669A5047992509 @default.
- W2980456669 hasAuthorship W2980456669A5048137524 @default.
- W2980456669 hasAuthorship W2980456669A5057723883 @default.
- W2980456669 hasAuthorship W2980456669A5082678604 @default.
- W2980456669 hasAuthorship W2980456669A5087226580 @default.
- W2980456669 hasAuthorship W2980456669A5090643817 @default.
- W2980456669 hasBestOaLocation W29804566691 @default.
- W2980456669 hasConcept C113775141 @default.
- W2980456669 hasConcept C11413529 @default.
- W2980456669 hasConcept C121332964 @default.
- W2980456669 hasConcept C124148022 @default.
- W2980456669 hasConcept C134146338 @default.
- W2980456669 hasConcept C154945302 @default.
- W2980456669 hasConcept C162324750 @default.
- W2980456669 hasConcept C165464430 @default.
- W2980456669 hasConcept C186468114 @default.
- W2980456669 hasConcept C2777303404 @default.
- W2980456669 hasConcept C2779094486 @default.
- W2980456669 hasConcept C41008148 @default.
- W2980456669 hasConcept C50522688 @default.
- W2980456669 hasConcept C58053490 @default.
- W2980456669 hasConcept C62520636 @default.
- W2980456669 hasConcept C80444323 @default.
- W2980456669 hasConcept C84114770 @default.
- W2980456669 hasConcept C85617194 @default.
- W2980456669 hasConceptScore W2980456669C113775141 @default.
- W2980456669 hasConceptScore W2980456669C11413529 @default.
- W2980456669 hasConceptScore W2980456669C121332964 @default.
- W2980456669 hasConceptScore W2980456669C124148022 @default.
- W2980456669 hasConceptScore W2980456669C134146338 @default.
- W2980456669 hasConceptScore W2980456669C154945302 @default.
- W2980456669 hasConceptScore W2980456669C162324750 @default.
- W2980456669 hasConceptScore W2980456669C165464430 @default.
- W2980456669 hasConceptScore W2980456669C186468114 @default.
- W2980456669 hasConceptScore W2980456669C2777303404 @default.
- W2980456669 hasConceptScore W2980456669C2779094486 @default.