Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980456690> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2980456690 abstract "Analyzing the response of the human brain to odors is critical to assess the function of olfactory and cognition. In this paper, an EEG (electroencephalograph)-based odor perception dataset is collected from ten subjects using thirteen odors stimuli. Based on the developed dataset, we employ channel-frequency convolutional neural network (CFCNN), combined with differential entropy (DE) features from different channels and frequency bands, to classify five odors that were consistently considered pleasant by the ten subjects. Meanwhile, the k-nearest neighbor (k-NN), linear discriminant analysis (LDA), support vector machine (SVM) and back propagation neural network (BPNN) are used as competing methods. The experimental results show that CFCNN is superior to the classic baselines and yields the highest accuracy in distinguishing five pleasant odors. Furthermore, compared with other four frequency bands, the gamma band presents the best classification accuracy, proving the closed relation between the olfaction and gamma band activity of the brain." @default.
- W2980456690 created "2019-10-25" @default.
- W2980456690 creator A5001616943 @default.
- W2980456690 creator A5044400083 @default.
- W2980456690 creator A5057497546 @default.
- W2980456690 date "2019-07-01" @default.
- W2980456690 modified "2023-09-23" @default.
- W2980456690 title "EEG-Based Odor Recognition Using Channel-Frequency Convolutional Neural Network" @default.
- W2980456690 cites W1947251450 @default.
- W2980456690 cites W2002902937 @default.
- W2980456690 cites W2009767195 @default.
- W2980456690 cites W2015337458 @default.
- W2980456690 cites W2069122467 @default.
- W2980456690 cites W2100495367 @default.
- W2980456690 cites W2118612347 @default.
- W2980456690 cites W2260564069 @default.
- W2980456690 cites W2345112827 @default.
- W2980456690 cites W2558673592 @default.
- W2980456690 cites W2559397256 @default.
- W2980456690 cites W2606724187 @default.
- W2980456690 cites W2772766867 @default.
- W2980456690 cites W2889504373 @default.
- W2980456690 cites W2894895904 @default.
- W2980456690 doi "https://doi.org/10.23919/chicc.2019.8865904" @default.
- W2980456690 hasPublicationYear "2019" @default.
- W2980456690 type Work @default.
- W2980456690 sameAs 2980456690 @default.
- W2980456690 citedByCount "1" @default.
- W2980456690 countsByYear W29804566902021 @default.
- W2980456690 crossrefType "proceedings-article" @default.
- W2980456690 hasAuthorship W2980456690A5001616943 @default.
- W2980456690 hasAuthorship W2980456690A5044400083 @default.
- W2980456690 hasAuthorship W2980456690A5057497546 @default.
- W2980456690 hasConcept C127162648 @default.
- W2980456690 hasConcept C153180895 @default.
- W2980456690 hasConcept C154945302 @default.
- W2980456690 hasConcept C15744967 @default.
- W2980456690 hasConcept C169760540 @default.
- W2980456690 hasConcept C2778916471 @default.
- W2980456690 hasConcept C28490314 @default.
- W2980456690 hasConcept C41008148 @default.
- W2980456690 hasConcept C522805319 @default.
- W2980456690 hasConcept C76155785 @default.
- W2980456690 hasConcept C81363708 @default.
- W2980456690 hasConceptScore W2980456690C127162648 @default.
- W2980456690 hasConceptScore W2980456690C153180895 @default.
- W2980456690 hasConceptScore W2980456690C154945302 @default.
- W2980456690 hasConceptScore W2980456690C15744967 @default.
- W2980456690 hasConceptScore W2980456690C169760540 @default.
- W2980456690 hasConceptScore W2980456690C2778916471 @default.
- W2980456690 hasConceptScore W2980456690C28490314 @default.
- W2980456690 hasConceptScore W2980456690C41008148 @default.
- W2980456690 hasConceptScore W2980456690C522805319 @default.
- W2980456690 hasConceptScore W2980456690C76155785 @default.
- W2980456690 hasConceptScore W2980456690C81363708 @default.
- W2980456690 hasLocation W29804566901 @default.
- W2980456690 hasOpenAccess W2980456690 @default.
- W2980456690 hasPrimaryLocation W29804566901 @default.
- W2980456690 hasRelatedWork W2175746458 @default.
- W2980456690 hasRelatedWork W2732542196 @default.
- W2980456690 hasRelatedWork W2738221750 @default.
- W2980456690 hasRelatedWork W2758063741 @default.
- W2980456690 hasRelatedWork W2760085659 @default.
- W2980456690 hasRelatedWork W2912288872 @default.
- W2980456690 hasRelatedWork W3012978760 @default.
- W2980456690 hasRelatedWork W3081496756 @default.
- W2980456690 hasRelatedWork W3093612317 @default.
- W2980456690 hasRelatedWork W4304820710 @default.
- W2980456690 isParatext "false" @default.
- W2980456690 isRetracted "false" @default.
- W2980456690 magId "2980456690" @default.
- W2980456690 workType "article" @default.