Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980470616> ?p ?o ?g. }
- W2980470616 abstract "We establish the out-of-sample predictability of monthly exchange rates via machine learning techniques based on 70 predictors capturing country characteristics, global variables, and their interactions. To better guard against overfitting in our high-dimensional and noisy data environment, we make additional adjustments to “off-the-shelf” implementations of machine learning techniques, including imposing economic constraints. The resulting forecasts consistently outperform the no-change benchmark, which has proven difficult to beat. Country characteristics are important for forecasting, once they interact with global variables. Machine learning forecasts also markedly improve the performance of a carry trade portfolio, especially since the global financial crisis." @default.
- W2980470616 created "2019-10-25" @default.
- W2980470616 creator A5005644819 @default.
- W2980470616 creator A5012239666 @default.
- W2980470616 creator A5020392888 @default.
- W2980470616 creator A5080266703 @default.
- W2980470616 date "2019-01-01" @default.
- W2980470616 modified "2023-10-16" @default.
- W2980470616 title "The Rise and Fall of the Carry Trade: Links to Exchange Rate Predictability" @default.
- W2980470616 cites W1572909356 @default.
- W2980470616 cites W1572930125 @default.
- W2980470616 cites W1678356000 @default.
- W2980470616 cites W1789808336 @default.
- W2980470616 cites W1968569892 @default.
- W2980470616 cites W1971735090 @default.
- W2980470616 cites W1988115241 @default.
- W2980470616 cites W2014405898 @default.
- W2980470616 cites W2014725748 @default.
- W2980470616 cites W2033085510 @default.
- W2980470616 cites W2038845560 @default.
- W2980470616 cites W2047152877 @default.
- W2980470616 cites W2047775520 @default.
- W2980470616 cites W2050031210 @default.
- W2980470616 cites W2059158367 @default.
- W2980470616 cites W2062886473 @default.
- W2980470616 cites W2067790650 @default.
- W2980470616 cites W2088563154 @default.
- W2980470616 cites W2093503007 @default.
- W2980470616 cites W2103496339 @default.
- W2980470616 cites W2116581043 @default.
- W2980470616 cites W2122825543 @default.
- W2980470616 cites W2125847307 @default.
- W2980470616 cites W2135046866 @default.
- W2980470616 cites W2135665921 @default.
- W2980470616 cites W2137983211 @default.
- W2980470616 cites W2140898820 @default.
- W2980470616 cites W2144570112 @default.
- W2980470616 cites W2154820696 @default.
- W2980470616 cites W2168175751 @default.
- W2980470616 cites W2168857564 @default.
- W2980470616 cites W2274447940 @default.
- W2980470616 cites W2319405822 @default.
- W2980470616 cites W2578706703 @default.
- W2980470616 cites W2607888471 @default.
- W2980470616 cites W2741744866 @default.
- W2980470616 cites W2795328435 @default.
- W2980470616 cites W2890662500 @default.
- W2980470616 cites W2890840156 @default.
- W2980470616 cites W3018089439 @default.
- W2980470616 cites W3090085957 @default.
- W2980470616 cites W3103473643 @default.
- W2980470616 cites W3106266785 @default.
- W2980470616 cites W3121266768 @default.
- W2980470616 cites W3121483912 @default.
- W2980470616 cites W3121542091 @default.
- W2980470616 cites W3121605682 @default.
- W2980470616 cites W3121800266 @default.
- W2980470616 cites W3122070388 @default.
- W2980470616 cites W3122351404 @default.
- W2980470616 cites W3122460797 @default.
- W2980470616 cites W3122609836 @default.
- W2980470616 cites W3122622435 @default.
- W2980470616 cites W3122631384 @default.
- W2980470616 cites W3123021517 @default.
- W2980470616 cites W3123129421 @default.
- W2980470616 cites W3123204756 @default.
- W2980470616 cites W3123764427 @default.
- W2980470616 cites W3123777129 @default.
- W2980470616 cites W3123977651 @default.
- W2980470616 cites W3123998694 @default.
- W2980470616 cites W3124139210 @default.
- W2980470616 cites W3124300825 @default.
- W2980470616 cites W3124375115 @default.
- W2980470616 cites W3124467146 @default.
- W2980470616 cites W3124670992 @default.
- W2980470616 cites W3124690764 @default.
- W2980470616 cites W3124919835 @default.
- W2980470616 cites W3125475163 @default.
- W2980470616 cites W3125665000 @default.
- W2980470616 cites W3125721915 @default.
- W2980470616 cites W3125785968 @default.
- W2980470616 cites W3125806391 @default.
- W2980470616 cites W3126081245 @default.
- W2980470616 cites W3126136988 @default.
- W2980470616 cites W3185025787 @default.
- W2980470616 cites W4205911876 @default.
- W2980470616 cites W4206503459 @default.
- W2980470616 cites W4213212567 @default.
- W2980470616 cites W4236966694 @default.
- W2980470616 cites W4256232074 @default.
- W2980470616 cites W4285674750 @default.
- W2980470616 doi "https://doi.org/10.2139/ssrn.3455713" @default.
- W2980470616 hasPublicationYear "2019" @default.
- W2980470616 type Work @default.
- W2980470616 sameAs 2980470616 @default.
- W2980470616 citedByCount "1" @default.
- W2980470616 countsByYear W29804706162022 @default.
- W2980470616 crossrefType "journal-article" @default.
- W2980470616 hasAuthorship W2980470616A5005644819 @default.
- W2980470616 hasAuthorship W2980470616A5012239666 @default.