Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980471844> ?p ?o ?g. }
- W2980471844 endingPage "116358" @default.
- W2980471844 startingPage "116358" @default.
- W2980471844 abstract "Short-term load forecasts are important tools for electrical utilities to balance electricity supply and demand. The exponential increase in behind-the-meter solar panel installation in California has made it more difficult to accurately predict electrical load. This study developed three forecast models based on multiple linear regression, random forest, and gradient boosting that incorporated solar capacity to predict hourly load in southern California 24-h in advance. Air temperature was the most important meteorological variable and holiday, month, solar capacity and the load from the previous week were the most important non-meteorological variables. All three models were more accurate when load was lower, such as early morning, late at night and during the winter. In contrast, all models had larger errors during the middle of the day and in summer when load was higher. The mean error, based on the forecasts for each hour of the day, was 3.5% for the random forest, 3.4% for the multiple linear regression, and 3.1% for the gradient boosting. Overall, the gradient boosting model performed the best and had errors <2% during the early morning and late evening. This study provides insights on short-term load forecasting in locations with a significant increase in solar generation." @default.
- W2980471844 created "2019-10-25" @default.
- W2980471844 creator A5016505683 @default.
- W2980471844 creator A5017144240 @default.
- W2980471844 creator A5030996981 @default.
- W2980471844 creator A5054418515 @default.
- W2980471844 date "2019-12-01" @default.
- W2980471844 modified "2023-10-14" @default.
- W2980471844 title "Comparison of three short-term load forecast models in Southern California" @default.
- W2980471844 cites W1678356000 @default.
- W2980471844 cites W1970636934 @default.
- W2980471844 cites W1980477020 @default.
- W2980471844 cites W1990471334 @default.
- W2980471844 cites W2016289405 @default.
- W2980471844 cites W2033980287 @default.
- W2980471844 cites W2039223247 @default.
- W2980471844 cites W2049751389 @default.
- W2980471844 cites W2055173761 @default.
- W2980471844 cites W2067576900 @default.
- W2980471844 cites W2070493638 @default.
- W2980471844 cites W2088794999 @default.
- W2980471844 cites W2094306384 @default.
- W2980471844 cites W2098207764 @default.
- W2980471844 cites W2122000057 @default.
- W2980471844 cites W2125223451 @default.
- W2980471844 cites W2128580816 @default.
- W2980471844 cites W2135499875 @default.
- W2980471844 cites W2135695572 @default.
- W2980471844 cites W2138763184 @default.
- W2980471844 cites W2151767444 @default.
- W2980471844 cites W2160624056 @default.
- W2980471844 cites W2340247464 @default.
- W2980471844 cites W2512474546 @default.
- W2980471844 cites W2544482769 @default.
- W2980471844 cites W2605951202 @default.
- W2980471844 cites W2766532256 @default.
- W2980471844 cites W2778669055 @default.
- W2980471844 cites W2781582701 @default.
- W2980471844 cites W2810073813 @default.
- W2980471844 cites W2883144926 @default.
- W2980471844 cites W2888909529 @default.
- W2980471844 cites W2911964244 @default.
- W2980471844 cites W2915898129 @default.
- W2980471844 cites W2918930847 @default.
- W2980471844 cites W2923573337 @default.
- W2980471844 cites W3125788818 @default.
- W2980471844 cites W4229740899 @default.
- W2980471844 cites W4240310768 @default.
- W2980471844 cites W977807926 @default.
- W2980471844 doi "https://doi.org/10.1016/j.energy.2019.116358" @default.
- W2980471844 hasPublicationYear "2019" @default.
- W2980471844 type Work @default.
- W2980471844 sameAs 2980471844 @default.
- W2980471844 citedByCount "43" @default.
- W2980471844 countsByYear W29804718442020 @default.
- W2980471844 countsByYear W29804718442021 @default.
- W2980471844 countsByYear W29804718442022 @default.
- W2980471844 countsByYear W29804718442023 @default.
- W2980471844 crossrefType "journal-article" @default.
- W2980471844 hasAuthorship W2980471844A5016505683 @default.
- W2980471844 hasAuthorship W2980471844A5017144240 @default.
- W2980471844 hasAuthorship W2980471844A5030996981 @default.
- W2980471844 hasAuthorship W2980471844A5054418515 @default.
- W2980471844 hasConcept C105795698 @default.
- W2980471844 hasConcept C119599485 @default.
- W2980471844 hasConcept C119857082 @default.
- W2980471844 hasConcept C121332964 @default.
- W2980471844 hasConcept C126322002 @default.
- W2980471844 hasConcept C127313418 @default.
- W2980471844 hasConcept C127413603 @default.
- W2980471844 hasConcept C149782125 @default.
- W2980471844 hasConcept C152877465 @default.
- W2980471844 hasConcept C153294291 @default.
- W2980471844 hasConcept C165801399 @default.
- W2980471844 hasConcept C169258074 @default.
- W2980471844 hasConcept C19720800 @default.
- W2980471844 hasConcept C205649164 @default.
- W2980471844 hasConcept C206658404 @default.
- W2980471844 hasConcept C33923547 @default.
- W2980471844 hasConcept C39432304 @default.
- W2980471844 hasConcept C41008148 @default.
- W2980471844 hasConcept C41291067 @default.
- W2980471844 hasConcept C48921125 @default.
- W2980471844 hasConcept C49204034 @default.
- W2980471844 hasConcept C61797465 @default.
- W2980471844 hasConcept C62520636 @default.
- W2980471844 hasConcept C70153297 @default.
- W2980471844 hasConcept C71924100 @default.
- W2980471844 hasConcept C77715397 @default.
- W2980471844 hasConceptScore W2980471844C105795698 @default.
- W2980471844 hasConceptScore W2980471844C119599485 @default.
- W2980471844 hasConceptScore W2980471844C119857082 @default.
- W2980471844 hasConceptScore W2980471844C121332964 @default.
- W2980471844 hasConceptScore W2980471844C126322002 @default.
- W2980471844 hasConceptScore W2980471844C127313418 @default.
- W2980471844 hasConceptScore W2980471844C127413603 @default.
- W2980471844 hasConceptScore W2980471844C149782125 @default.
- W2980471844 hasConceptScore W2980471844C152877465 @default.