Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980481303> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2980481303 abstract "The oil palm is an important agro-industrial commodity in Colombia and this kind of crops is severely affected by different diseases. Specifically, the But Rot is the most common disease in oil palm crops. Traditionally, the diagnosis and control of diseases in oil palm crops is an invasive process that requires a time-consuming analysis. Therefore, an automatic classification task is required for identifying this kind of disease. On one hand, hyperspectral images (HSI) are used as a remote sensing tool that allows the identification of different features in a land cover, including diseases in crops and materials. However, the HSI classification is a challenging task, due to the spectral signature is typically associated with a unique class, and consequently, it causes low accuracy on classification results. In other words, most of HSI classification methods do not consider the contributions of one or more materials in the measured spectral pixel, leading to a multiclass model at sub-pixel levels. To address this limitation, spectral unmixing (SU) approach has been used to estimate the contributions of the different materials covered by a pixel. On the other hand, convolutional neural networks (CNN) have demonstrated great a performance in classification tasks using HSI. In this work, a classification approach of the But Rot disease in oil palm is proposed by using SU and CNN through HSI. The architecture of the proposed classifier contains 5 layers which are two convolutional layers, two ReLu layer, and one full connected layer. Simulations results show that the proposed classification method exhibits the best classification performance in terms of the overall accuracy, achieving up 88:7861% using only 20% of the training samples, compared to traditional classification approaches." @default.
- W2980481303 created "2019-10-25" @default.
- W2980481303 creator A5066660536 @default.
- W2980481303 creator A5081714132 @default.
- W2980481303 creator A5090211271 @default.
- W2980481303 date "2019-10-21" @default.
- W2980481303 modified "2023-09-27" @default.
- W2980481303 title "Classification of oil palm diseases via spectral unmixing and convolutional neural networks" @default.
- W2980481303 cites W1964570608 @default.
- W2980481303 cites W1966580635 @default.
- W2980481303 cites W1966798775 @default.
- W2980481303 cites W1971637299 @default.
- W2980481303 cites W2022508996 @default.
- W2980481303 cites W2029316659 @default.
- W2980481303 cites W2033154814 @default.
- W2980481303 cites W2037236246 @default.
- W2980481303 cites W2042436931 @default.
- W2980481303 cites W2046817177 @default.
- W2980481303 cites W2104877815 @default.
- W2980481303 cites W2112641530 @default.
- W2980481303 cites W2125085157 @default.
- W2980481303 cites W2141125852 @default.
- W2980481303 cites W2144354855 @default.
- W2980481303 cites W2168478992 @default.
- W2980481303 cites W2412588858 @default.
- W2980481303 cites W2500751094 @default.
- W2980481303 cites W2567114774 @default.
- W2980481303 cites W2919115771 @default.
- W2980481303 cites W2944957604 @default.
- W2980481303 cites W4233760599 @default.
- W2980481303 doi "https://doi.org/10.1117/12.2533351" @default.
- W2980481303 hasPublicationYear "2019" @default.
- W2980481303 type Work @default.
- W2980481303 sameAs 2980481303 @default.
- W2980481303 citedByCount "0" @default.
- W2980481303 crossrefType "proceedings-article" @default.
- W2980481303 hasAuthorship W2980481303A5066660536 @default.
- W2980481303 hasAuthorship W2980481303A5081714132 @default.
- W2980481303 hasAuthorship W2980481303A5090211271 @default.
- W2980481303 hasConcept C115961682 @default.
- W2980481303 hasConcept C153180895 @default.
- W2980481303 hasConcept C154945302 @default.
- W2980481303 hasConcept C159078339 @default.
- W2980481303 hasConcept C160633673 @default.
- W2980481303 hasConcept C176641082 @default.
- W2980481303 hasConcept C205649164 @default.
- W2980481303 hasConcept C41008148 @default.
- W2980481303 hasConcept C52622490 @default.
- W2980481303 hasConcept C62649853 @default.
- W2980481303 hasConcept C75294576 @default.
- W2980481303 hasConcept C81363708 @default.
- W2980481303 hasConcept C95623464 @default.
- W2980481303 hasConceptScore W2980481303C115961682 @default.
- W2980481303 hasConceptScore W2980481303C153180895 @default.
- W2980481303 hasConceptScore W2980481303C154945302 @default.
- W2980481303 hasConceptScore W2980481303C159078339 @default.
- W2980481303 hasConceptScore W2980481303C160633673 @default.
- W2980481303 hasConceptScore W2980481303C176641082 @default.
- W2980481303 hasConceptScore W2980481303C205649164 @default.
- W2980481303 hasConceptScore W2980481303C41008148 @default.
- W2980481303 hasConceptScore W2980481303C52622490 @default.
- W2980481303 hasConceptScore W2980481303C62649853 @default.
- W2980481303 hasConceptScore W2980481303C75294576 @default.
- W2980481303 hasConceptScore W2980481303C81363708 @default.
- W2980481303 hasConceptScore W2980481303C95623464 @default.
- W2980481303 hasLocation W29804813031 @default.
- W2980481303 hasOpenAccess W2980481303 @default.
- W2980481303 hasPrimaryLocation W29804813031 @default.
- W2980481303 hasRelatedWork W11946948 @default.
- W2980481303 hasRelatedWork W13815759 @default.
- W2980481303 hasRelatedWork W2582698 @default.
- W2980481303 hasRelatedWork W2834797 @default.
- W2980481303 hasRelatedWork W3489726 @default.
- W2980481303 hasRelatedWork W3506425 @default.
- W2980481303 hasRelatedWork W5961960 @default.
- W2980481303 hasRelatedWork W844961 @default.
- W2980481303 hasRelatedWork W946622 @default.
- W2980481303 hasRelatedWork W9656245 @default.
- W2980481303 isParatext "false" @default.
- W2980481303 isRetracted "false" @default.
- W2980481303 magId "2980481303" @default.
- W2980481303 workType "article" @default.