Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980488414> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2980488414 endingPage "103263" @default.
- W2980488414 startingPage "103263" @default.
- W2980488414 abstract "Abstract In this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset in a raw, original format (14-bit depth) to preserve all important details. In our experiments, we utilize two metrics usually used for image enhancement evaluation: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Metric (SSIM). In addition, we present how to design a SR network with a widened receptive field to mitigate the problem of contextual information being spread over larger image regions due to the heat flow in thermal images. Finally, we determine whether there is a relation between achieved PSNR and accuracy of facial areas detection that can be analyzed for vital signs extraction (e.g. nostril region). The performed evaluation showed that PSNR can be improved even by 60% if full bit depth resolution data is used instead of 8 bits. Also, we showed that the application of image enhancement solution is necessary for low resolution images to achieve a satisfactory accuracy of object detection." @default.
- W2980488414 created "2019-10-25" @default.
- W2980488414 creator A5020102552 @default.
- W2980488414 creator A5043404759 @default.
- W2980488414 creator A5044309467 @default.
- W2980488414 creator A5059919489 @default.
- W2980488414 date "2020-01-01" @default.
- W2980488414 modified "2023-09-30" @default.
- W2980488414 title "Super-resolved thermal imagery for high-accuracy facial areas detection and analysis" @default.
- W2980488414 cites W1677182931 @default.
- W2980488414 cites W1885185971 @default.
- W2980488414 cites W1976416062 @default.
- W2980488414 cites W1999621311 @default.
- W2980488414 cites W2010070459 @default.
- W2980488414 cites W2047920195 @default.
- W2980488414 cites W2067042811 @default.
- W2980488414 cites W2073178713 @default.
- W2980488414 cites W2140050933 @default.
- W2980488414 cites W2157190232 @default.
- W2980488414 cites W2157494358 @default.
- W2980488414 cites W2172128189 @default.
- W2980488414 cites W2194775991 @default.
- W2980488414 cites W2214802144 @default.
- W2980488414 cites W2242218935 @default.
- W2980488414 cites W2291632225 @default.
- W2980488414 cites W2493819003 @default.
- W2980488414 cites W2516749401 @default.
- W2980488414 cites W2527019762 @default.
- W2980488414 cites W2566352549 @default.
- W2980488414 cites W2599698286 @default.
- W2980488414 cites W2747898905 @default.
- W2980488414 cites W2885426888 @default.
- W2980488414 cites W2899311092 @default.
- W2980488414 cites W2907387415 @default.
- W2980488414 doi "https://doi.org/10.1016/j.engappai.2019.103263" @default.
- W2980488414 hasPublicationYear "2020" @default.
- W2980488414 type Work @default.
- W2980488414 sameAs 2980488414 @default.
- W2980488414 citedByCount "16" @default.
- W2980488414 countsByYear W29804884142021 @default.
- W2980488414 countsByYear W29804884142022 @default.
- W2980488414 countsByYear W29804884142023 @default.
- W2980488414 crossrefType "journal-article" @default.
- W2980488414 hasAuthorship W2980488414A5020102552 @default.
- W2980488414 hasAuthorship W2980488414A5043404759 @default.
- W2980488414 hasAuthorship W2980488414A5044309467 @default.
- W2980488414 hasAuthorship W2980488414A5059919489 @default.
- W2980488414 hasConcept C127313418 @default.
- W2980488414 hasConcept C153180895 @default.
- W2980488414 hasConcept C154945302 @default.
- W2980488414 hasConcept C31972630 @default.
- W2980488414 hasConcept C41008148 @default.
- W2980488414 hasConcept C62649853 @default.
- W2980488414 hasConceptScore W2980488414C127313418 @default.
- W2980488414 hasConceptScore W2980488414C153180895 @default.
- W2980488414 hasConceptScore W2980488414C154945302 @default.
- W2980488414 hasConceptScore W2980488414C31972630 @default.
- W2980488414 hasConceptScore W2980488414C41008148 @default.
- W2980488414 hasConceptScore W2980488414C62649853 @default.
- W2980488414 hasFunder F4320307102 @default.
- W2980488414 hasFunder F4320320883 @default.
- W2980488414 hasFunder F4320320924 @default.
- W2980488414 hasFunder F4320321181 @default.
- W2980488414 hasFunder F4320321390 @default.
- W2980488414 hasFunder F4320323690 @default.
- W2980488414 hasLocation W29804884141 @default.
- W2980488414 hasOpenAccess W2980488414 @default.
- W2980488414 hasPrimaryLocation W29804884141 @default.
- W2980488414 hasRelatedWork W1891287906 @default.
- W2980488414 hasRelatedWork W1969923398 @default.
- W2980488414 hasRelatedWork W2036807459 @default.
- W2980488414 hasRelatedWork W2058170566 @default.
- W2980488414 hasRelatedWork W2170022336 @default.
- W2980488414 hasRelatedWork W2229312674 @default.
- W2980488414 hasRelatedWork W258625772 @default.
- W2980488414 hasRelatedWork W2755342338 @default.
- W2980488414 hasRelatedWork W2772917594 @default.
- W2980488414 hasRelatedWork W3116076068 @default.
- W2980488414 hasVolume "87" @default.
- W2980488414 isParatext "false" @default.
- W2980488414 isRetracted "false" @default.
- W2980488414 magId "2980488414" @default.
- W2980488414 workType "article" @default.