Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980491816> ?p ?o ?g. }
- W2980491816 abstract "Deep learning based image denoising methods have been extensively investigated. In this paper, attention mechanism enhanced kernel prediction networks (AME-KPNs) are proposed for burst image denoising, in which, nearly cost-free attention modules are adopted to first refine the feature maps and to further make a full use of the inter-frame and intra-frame redundancies within the whole image burst. The proposed AME-KPNs output per-pixel spatially-adaptive kernels, residual maps and corresponding weight maps, in which, the predicted kernels roughly restore clean pixels at their corresponding locations via an adaptive convolution operation, and subsequently, residuals are weighted and summed to compensate the limited receptive field of predicted kernels. Simulations and real-world experiments are conducted to illustrate the robustness of the proposed AME-KPNs in burst image denoising." @default.
- W2980491816 created "2019-10-25" @default.
- W2980491816 creator A5005242197 @default.
- W2980491816 creator A5017908128 @default.
- W2980491816 creator A5058154161 @default.
- W2980491816 creator A5068442296 @default.
- W2980491816 creator A5071994035 @default.
- W2980491816 date "2019-10-18" @default.
- W2980491816 modified "2023-09-28" @default.
- W2980491816 title "Attention Mechanism Enhanced Kernel Prediction Networks for Denoising of Burst Images" @default.
- W2980491816 cites W1901129140 @default.
- W2980491816 cites W1981401019 @default.
- W2980491816 cites W2025328853 @default.
- W2980491816 cites W2026019078 @default.
- W2980491816 cites W2056370875 @default.
- W2980491816 cites W2097073572 @default.
- W2980491816 cites W2508457857 @default.
- W2980491816 cites W2604329646 @default.
- W2980491816 cites W2884585870 @default.
- W2980491816 cites W2912646773 @default.
- W2980491816 cites W2936047212 @default.
- W2980491816 cites W2938390807 @default.
- W2980491816 cites W2963200935 @default.
- W2980491816 cites W2963314397 @default.
- W2980491816 cites W2963725279 @default.
- W2980491816 cites W2963914989 @default.
- W2980491816 cites W2964046669 @default.
- W2980491816 cites W2965669158 @default.
- W2980491816 cites W2966620583 @default.
- W2980491816 cites W2983315964 @default.
- W2980491816 doi "https://doi.org/10.48550/arxiv.1910.08313" @default.
- W2980491816 hasPublicationYear "2019" @default.
- W2980491816 type Work @default.
- W2980491816 sameAs 2980491816 @default.
- W2980491816 citedByCount "0" @default.
- W2980491816 crossrefType "posted-content" @default.
- W2980491816 hasAuthorship W2980491816A5005242197 @default.
- W2980491816 hasAuthorship W2980491816A5017908128 @default.
- W2980491816 hasAuthorship W2980491816A5058154161 @default.
- W2980491816 hasAuthorship W2980491816A5068442296 @default.
- W2980491816 hasAuthorship W2980491816A5071994035 @default.
- W2980491816 hasBestOaLocation W29804918161 @default.
- W2980491816 hasConcept C101453961 @default.
- W2980491816 hasConcept C104317684 @default.
- W2980491816 hasConcept C11413529 @default.
- W2980491816 hasConcept C114614502 @default.
- W2980491816 hasConcept C126042441 @default.
- W2980491816 hasConcept C138885662 @default.
- W2980491816 hasConcept C153180895 @default.
- W2980491816 hasConcept C154945302 @default.
- W2980491816 hasConcept C155512373 @default.
- W2980491816 hasConcept C160633673 @default.
- W2980491816 hasConcept C163294075 @default.
- W2980491816 hasConcept C185592680 @default.
- W2980491816 hasConcept C2776401178 @default.
- W2980491816 hasConcept C2983327147 @default.
- W2980491816 hasConcept C31972630 @default.
- W2980491816 hasConcept C33923547 @default.
- W2980491816 hasConcept C41008148 @default.
- W2980491816 hasConcept C41895202 @default.
- W2980491816 hasConcept C45347329 @default.
- W2980491816 hasConcept C50644808 @default.
- W2980491816 hasConcept C55493867 @default.
- W2980491816 hasConcept C63479239 @default.
- W2980491816 hasConcept C74193536 @default.
- W2980491816 hasConcept C76155785 @default.
- W2980491816 hasConceptScore W2980491816C101453961 @default.
- W2980491816 hasConceptScore W2980491816C104317684 @default.
- W2980491816 hasConceptScore W2980491816C11413529 @default.
- W2980491816 hasConceptScore W2980491816C114614502 @default.
- W2980491816 hasConceptScore W2980491816C126042441 @default.
- W2980491816 hasConceptScore W2980491816C138885662 @default.
- W2980491816 hasConceptScore W2980491816C153180895 @default.
- W2980491816 hasConceptScore W2980491816C154945302 @default.
- W2980491816 hasConceptScore W2980491816C155512373 @default.
- W2980491816 hasConceptScore W2980491816C160633673 @default.
- W2980491816 hasConceptScore W2980491816C163294075 @default.
- W2980491816 hasConceptScore W2980491816C185592680 @default.
- W2980491816 hasConceptScore W2980491816C2776401178 @default.
- W2980491816 hasConceptScore W2980491816C2983327147 @default.
- W2980491816 hasConceptScore W2980491816C31972630 @default.
- W2980491816 hasConceptScore W2980491816C33923547 @default.
- W2980491816 hasConceptScore W2980491816C41008148 @default.
- W2980491816 hasConceptScore W2980491816C41895202 @default.
- W2980491816 hasConceptScore W2980491816C45347329 @default.
- W2980491816 hasConceptScore W2980491816C50644808 @default.
- W2980491816 hasConceptScore W2980491816C55493867 @default.
- W2980491816 hasConceptScore W2980491816C63479239 @default.
- W2980491816 hasConceptScore W2980491816C74193536 @default.
- W2980491816 hasConceptScore W2980491816C76155785 @default.
- W2980491816 hasLocation W29804918161 @default.
- W2980491816 hasOpenAccess W2980491816 @default.
- W2980491816 hasPrimaryLocation W29804918161 @default.
- W2980491816 hasRelatedWork W2012677266 @default.
- W2980491816 hasRelatedWork W2015692266 @default.
- W2980491816 hasRelatedWork W2258377701 @default.
- W2980491816 hasRelatedWork W2883534617 @default.
- W2980491816 hasRelatedWork W2908521438 @default.
- W2980491816 hasRelatedWork W2909121564 @default.
- W2980491816 hasRelatedWork W2950807457 @default.