Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980493715> ?p ?o ?g. }
- W2980493715 endingPage "105118" @default.
- W2980493715 startingPage "105118" @default.
- W2980493715 abstract "Only a few customers can be labeled in realistic credit-scoring problems, while many other customers cannot. Further, satisfactory performance is difficult, as traditional supervised learning methods can only use labeled samples to build credit-scoring models. Semi-supervised learning (SSL) can use both labeled and unlabeled samples to solve this problem, but existing credit-scoring research has primarily constructed single semi-supervised models. This study introduces SSL, cost-sensitive learning, a group method of data handling (GMDH), and an ensemble learning technique to propose a GMDH-based cost-sensitive semi-supervised selective ensemble (GCSSE) model. This involves two stages: (1)First, train an ensemble model composed of N base classifiers on the initial training set L with class labels, use it to selectively label the samples from the dataset U without class labels, add them with their predicted labels to the training set, and update the N base classifiers on the new training set; (2)Second, classify L and the test set using the respective trained base classifiers, and construct a cost-sensitive GMDH neural network to obtain the selective ensemble classification results for the test set. Experimental comparisons of five public customer credit score datasets and an empirical analysis of a real customer credit score dataset suggest that this model exhibits the best overall credit-scoring performance compared with one supervised ensemble model and three semi-supervised ensemble models." @default.
- W2980493715 created "2019-10-25" @default.
- W2980493715 creator A5037663704 @default.
- W2980493715 creator A5068860197 @default.
- W2980493715 creator A5073631276 @default.
- W2980493715 creator A5081048476 @default.
- W2980493715 creator A5088778137 @default.
- W2980493715 creator A5089290196 @default.
- W2980493715 date "2020-02-01" @default.
- W2980493715 modified "2023-10-14" @default.
- W2980493715 title "Cost-sensitive semi-supervised selective ensemble model for customer credit scoring" @default.
- W2980493715 cites W1968969471 @default.
- W2980493715 cites W1970591008 @default.
- W2980493715 cites W1982211005 @default.
- W2980493715 cites W1988529147 @default.
- W2980493715 cites W1993626219 @default.
- W2980493715 cites W2000950277 @default.
- W2980493715 cites W2033233667 @default.
- W2980493715 cites W2036547589 @default.
- W2980493715 cites W2039609561 @default.
- W2980493715 cites W2045516668 @default.
- W2980493715 cites W2051455168 @default.
- W2980493715 cites W2054640944 @default.
- W2980493715 cites W2071458777 @default.
- W2980493715 cites W2093829413 @default.
- W2980493715 cites W2099454382 @default.
- W2980493715 cites W2113242816 @default.
- W2980493715 cites W2127499922 @default.
- W2980493715 cites W2131816657 @default.
- W2980493715 cites W2133556223 @default.
- W2980493715 cites W2135725275 @default.
- W2980493715 cites W2165396616 @default.
- W2980493715 cites W2195636112 @default.
- W2980493715 cites W2208635417 @default.
- W2980493715 cites W2273893358 @default.
- W2980493715 cites W2296034778 @default.
- W2980493715 cites W2345575339 @default.
- W2980493715 cites W2586297576 @default.
- W2980493715 cites W2593370983 @default.
- W2980493715 cites W2600061660 @default.
- W2980493715 cites W2626395746 @default.
- W2980493715 cites W2711122919 @default.
- W2980493715 cites W2761075141 @default.
- W2980493715 cites W2765458100 @default.
- W2980493715 cites W2765511333 @default.
- W2980493715 cites W2809214597 @default.
- W2980493715 cites W2810273060 @default.
- W2980493715 cites W2895269073 @default.
- W2980493715 cites W2908390493 @default.
- W2980493715 cites W4206723194 @default.
- W2980493715 cites W4210997624 @default.
- W2980493715 cites W4212883601 @default.
- W2980493715 cites W4241727697 @default.
- W2980493715 cites W4244259635 @default.
- W2980493715 doi "https://doi.org/10.1016/j.knosys.2019.105118" @default.
- W2980493715 hasPublicationYear "2020" @default.
- W2980493715 type Work @default.
- W2980493715 sameAs 2980493715 @default.
- W2980493715 citedByCount "41" @default.
- W2980493715 countsByYear W29804937152020 @default.
- W2980493715 countsByYear W29804937152021 @default.
- W2980493715 countsByYear W29804937152022 @default.
- W2980493715 countsByYear W29804937152023 @default.
- W2980493715 crossrefType "journal-article" @default.
- W2980493715 hasAuthorship W2980493715A5037663704 @default.
- W2980493715 hasAuthorship W2980493715A5068860197 @default.
- W2980493715 hasAuthorship W2980493715A5073631276 @default.
- W2980493715 hasAuthorship W2980493715A5081048476 @default.
- W2980493715 hasAuthorship W2980493715A5088778137 @default.
- W2980493715 hasAuthorship W2980493715A5089290196 @default.
- W2980493715 hasConcept C119857082 @default.
- W2980493715 hasConcept C119898033 @default.
- W2980493715 hasConcept C124101348 @default.
- W2980493715 hasConcept C134306372 @default.
- W2980493715 hasConcept C136389625 @default.
- W2980493715 hasConcept C154945302 @default.
- W2980493715 hasConcept C16910744 @default.
- W2980493715 hasConcept C169903167 @default.
- W2980493715 hasConcept C177264268 @default.
- W2980493715 hasConcept C199360897 @default.
- W2980493715 hasConcept C2777212361 @default.
- W2980493715 hasConcept C33923547 @default.
- W2980493715 hasConcept C41008148 @default.
- W2980493715 hasConcept C42058472 @default.
- W2980493715 hasConcept C45942800 @default.
- W2980493715 hasConcept C50644808 @default.
- W2980493715 hasConcept C58489278 @default.
- W2980493715 hasConceptScore W2980493715C119857082 @default.
- W2980493715 hasConceptScore W2980493715C119898033 @default.
- W2980493715 hasConceptScore W2980493715C124101348 @default.
- W2980493715 hasConceptScore W2980493715C134306372 @default.
- W2980493715 hasConceptScore W2980493715C136389625 @default.
- W2980493715 hasConceptScore W2980493715C154945302 @default.
- W2980493715 hasConceptScore W2980493715C16910744 @default.
- W2980493715 hasConceptScore W2980493715C169903167 @default.
- W2980493715 hasConceptScore W2980493715C177264268 @default.
- W2980493715 hasConceptScore W2980493715C199360897 @default.
- W2980493715 hasConceptScore W2980493715C2777212361 @default.