Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980496667> ?p ?o ?g. }
- W2980496667 abstract "Hybrid beamforming (HB) has emerged as a promising technology to support ultra high transmission capacity and with low complexity for Millimeter Wave (mmWave) multiple-input and multiple-output (MIMO) system. However, the design of digital and analog beamformer is a challenge task with non-convex optimization, especially for the multi-user scenario. Recently, the blooming of deep learning research provides a new vision for the signal processing of communication system. In this work, we propose a deep neural network based HB for the multi-User mmWave massive MIMO system, referred as DNHB. The HB system is formulated as an autoencoder neural network, which is trained in a style of end-to-end self-supervised learning. With the strong representation capability of deep neural network, the proposed DNHB exhibits superior performance than the traditional linear processing methods. According to the simulation results, DNHB outperforms about 2 dB in terms of bit error rate (BER) performance compared with existing methods." @default.
- W2980496667 created "2019-10-25" @default.
- W2980496667 creator A5033679378 @default.
- W2980496667 creator A5038709835 @default.
- W2980496667 creator A5072973888 @default.
- W2980496667 creator A5078283071 @default.
- W2980496667 creator A5078286204 @default.
- W2980496667 date "2019-10-15" @default.
- W2980496667 modified "2023-10-18" @default.
- W2980496667 title "Hybrid Beamforming/Combining for Millimeter Wave MIMO: A Machine Learning Approach" @default.
- W2980496667 cites W1499056928 @default.
- W2980496667 cites W1583464773 @default.
- W2980496667 cites W1700411129 @default.
- W2980496667 cites W1968160461 @default.
- W2980496667 cites W198746835 @default.
- W2980496667 cites W2002526744 @default.
- W2980496667 cites W2005939311 @default.
- W2980496667 cites W2015959396 @default.
- W2980496667 cites W2034651337 @default.
- W2980496667 cites W2041287972 @default.
- W2980496667 cites W2053521124 @default.
- W2980496667 cites W2054227708 @default.
- W2980496667 cites W2105147296 @default.
- W2980496667 cites W2106400463 @default.
- W2980496667 cites W2108687047 @default.
- W2980496667 cites W2132875979 @default.
- W2980496667 cites W2165350939 @default.
- W2980496667 cites W2167956149 @default.
- W2980496667 cites W2171879683 @default.
- W2980496667 cites W2189661557 @default.
- W2980496667 cites W2259391824 @default.
- W2980496667 cites W2272804037 @default.
- W2980496667 cites W2288609809 @default.
- W2980496667 cites W2345417877 @default.
- W2980496667 cites W2469174679 @default.
- W2980496667 cites W2481281758 @default.
- W2980496667 cites W2519821742 @default.
- W2980496667 cites W2520409964 @default.
- W2980496667 cites W2547350840 @default.
- W2980496667 cites W2591812953 @default.
- W2980496667 cites W2609243569 @default.
- W2980496667 cites W2734408173 @default.
- W2980496667 cites W2738594702 @default.
- W2980496667 cites W2757012878 @default.
- W2980496667 cites W2757474971 @default.
- W2980496667 cites W2766190981 @default.
- W2980496667 cites W2773766780 @default.
- W2980496667 cites W2774087927 @default.
- W2980496667 cites W2787767549 @default.
- W2980496667 cites W2793993768 @default.
- W2980496667 cites W2805657678 @default.
- W2980496667 cites W2886270111 @default.
- W2980496667 cites W2909794597 @default.
- W2980496667 cites W2912386632 @default.
- W2980496667 cites W2943699756 @default.
- W2980496667 cites W2953216660 @default.
- W2980496667 cites W2956320240 @default.
- W2980496667 cites W2962720842 @default.
- W2980496667 cites W2962785465 @default.
- W2980496667 cites W2963182751 @default.
- W2980496667 cites W2963622214 @default.
- W2980496667 cites W2964119562 @default.
- W2980496667 cites W2964218543 @default.
- W2980496667 cites W2965537075 @default.
- W2980496667 cites W2965824823 @default.
- W2980496667 cites W3099485648 @default.
- W2980496667 cites W3099908750 @default.
- W2980496667 doi "https://doi.org/10.48550/arxiv.1910.06585" @default.
- W2980496667 hasPublicationYear "2019" @default.
- W2980496667 type Work @default.
- W2980496667 sameAs 2980496667 @default.
- W2980496667 citedByCount "0" @default.
- W2980496667 crossrefType "posted-content" @default.
- W2980496667 hasAuthorship W2980496667A5033679378 @default.
- W2980496667 hasAuthorship W2980496667A5038709835 @default.
- W2980496667 hasAuthorship W2980496667A5072973888 @default.
- W2980496667 hasAuthorship W2980496667A5078283071 @default.
- W2980496667 hasAuthorship W2980496667A5078286204 @default.
- W2980496667 hasBestOaLocation W29804966671 @default.
- W2980496667 hasConcept C101738243 @default.
- W2980496667 hasConcept C101765175 @default.
- W2980496667 hasConcept C108583219 @default.
- W2980496667 hasConcept C111919701 @default.
- W2980496667 hasConcept C113775141 @default.
- W2980496667 hasConcept C118505674 @default.
- W2980496667 hasConcept C119857082 @default.
- W2980496667 hasConcept C127413603 @default.
- W2980496667 hasConcept C154945302 @default.
- W2980496667 hasConcept C207987634 @default.
- W2980496667 hasConcept C24326235 @default.
- W2980496667 hasConcept C2778291847 @default.
- W2980496667 hasConcept C41008148 @default.
- W2980496667 hasConcept C50644808 @default.
- W2980496667 hasConcept C54197355 @default.
- W2980496667 hasConcept C56296756 @default.
- W2980496667 hasConcept C57273362 @default.
- W2980496667 hasConcept C68649174 @default.
- W2980496667 hasConcept C76155785 @default.
- W2980496667 hasConceptScore W2980496667C101738243 @default.
- W2980496667 hasConceptScore W2980496667C101765175 @default.