Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980498330> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2980498330 endingPage "377" @default.
- W2980498330 startingPage "371" @default.
- W2980498330 abstract "Abstract. Crack is one of the main problems of roads that can reduce the quality of the road or put it in danger in terms of safety. These cracks are needed to be identified first in order to be investigated and followed up. So detecting cracks is one of the most important parts of the road maintenance procedures, which has been considered in recent years. On the other hand, traditional manual methods of crack detection are very time-consuming and dangerous. It is timely because human resources must have thorough and accurate road visits and examine their qualitative status. For this reason, the automatic methods are utilized instead of these methods to increase the speed and reliability of the crack analysis in intelligent transport systems. A simple method is used in this research to detect the crack. Based on the proposed method, a softening filter is applied first on the image to reduce the noise, and then an edge detection filter is applied to the image. Generally, the noise still exists in the image after applying these filters. A window is used here that scans all the image and calculates the average standard deviation for all the pixels in each window, and removes the noise by considering a range. Then the process of removing noise is done with more stringency by reducing the search window in each iteration. Finally, this method was compared with one of the most prominent and modern methods of detecting cracks using a random forest method and the results indicated that despite the simplicity and the speed of the existing method in this study, it has an acceptable performance compared to the manual and random forest methods." @default.
- W2980498330 created "2019-10-25" @default.
- W2980498330 creator A5023819067 @default.
- W2980498330 creator A5086467107 @default.
- W2980498330 date "2019-10-18" @default.
- W2980498330 modified "2023-10-16" @default.
- W2980498330 title "ROAD CRACK DETECTION USING GAUSSIAN/PREWITT FILTER" @default.
- W2980498330 cites W1565456886 @default.
- W2980498330 cites W1931605281 @default.
- W2980498330 cites W1995130521 @default.
- W2980498330 cites W2000723788 @default.
- W2980498330 cites W2011122613 @default.
- W2980498330 cites W2020109627 @default.
- W2980498330 cites W2072512222 @default.
- W2980498330 cites W2074925468 @default.
- W2980498330 cites W2081857838 @default.
- W2980498330 cites W2113365528 @default.
- W2980498330 cites W2114563034 @default.
- W2980498330 cites W2137160061 @default.
- W2980498330 cites W2144801789 @default.
- W2980498330 cites W2146052399 @default.
- W2980498330 cites W2407692387 @default.
- W2980498330 cites W2520959394 @default.
- W2980498330 cites W273955616 @default.
- W2980498330 cites W2911964244 @default.
- W2980498330 cites W591661179 @default.
- W2980498330 doi "https://doi.org/10.5194/isprs-archives-xlii-4-w18-371-2019" @default.
- W2980498330 hasPublicationYear "2019" @default.
- W2980498330 type Work @default.
- W2980498330 sameAs 2980498330 @default.
- W2980498330 citedByCount "4" @default.
- W2980498330 countsByYear W29804983302023 @default.
- W2980498330 crossrefType "journal-article" @default.
- W2980498330 hasAuthorship W2980498330A5023819067 @default.
- W2980498330 hasAuthorship W2980498330A5086467107 @default.
- W2980498330 hasBestOaLocation W29804983301 @default.
- W2980498330 hasConcept C106131492 @default.
- W2980498330 hasConcept C111919701 @default.
- W2980498330 hasConcept C115961682 @default.
- W2980498330 hasConcept C154945302 @default.
- W2980498330 hasConcept C155012704 @default.
- W2980498330 hasConcept C160633673 @default.
- W2980498330 hasConcept C193536780 @default.
- W2980498330 hasConcept C31972630 @default.
- W2980498330 hasConcept C41008148 @default.
- W2980498330 hasConcept C55352655 @default.
- W2980498330 hasConcept C9417928 @default.
- W2980498330 hasConcept C98045186 @default.
- W2980498330 hasConcept C99498987 @default.
- W2980498330 hasConceptScore W2980498330C106131492 @default.
- W2980498330 hasConceptScore W2980498330C111919701 @default.
- W2980498330 hasConceptScore W2980498330C115961682 @default.
- W2980498330 hasConceptScore W2980498330C154945302 @default.
- W2980498330 hasConceptScore W2980498330C155012704 @default.
- W2980498330 hasConceptScore W2980498330C160633673 @default.
- W2980498330 hasConceptScore W2980498330C193536780 @default.
- W2980498330 hasConceptScore W2980498330C31972630 @default.
- W2980498330 hasConceptScore W2980498330C41008148 @default.
- W2980498330 hasConceptScore W2980498330C55352655 @default.
- W2980498330 hasConceptScore W2980498330C9417928 @default.
- W2980498330 hasConceptScore W2980498330C98045186 @default.
- W2980498330 hasConceptScore W2980498330C99498987 @default.
- W2980498330 hasLocation W29804983301 @default.
- W2980498330 hasLocation W29804983302 @default.
- W2980498330 hasOpenAccess W2980498330 @default.
- W2980498330 hasPrimaryLocation W29804983301 @default.
- W2980498330 hasRelatedWork W2040854736 @default.
- W2980498330 hasRelatedWork W2102922167 @default.
- W2980498330 hasRelatedWork W2164309059 @default.
- W2980498330 hasRelatedWork W2203795865 @default.
- W2980498330 hasRelatedWork W2604071268 @default.
- W2980498330 hasRelatedWork W3089603412 @default.
- W2980498330 hasRelatedWork W3163485789 @default.
- W2980498330 hasRelatedWork W1927170819 @default.
- W2980498330 hasRelatedWork W2576500967 @default.
- W2980498330 hasRelatedWork W2757873631 @default.
- W2980498330 hasVolume "XLII-4/W18" @default.
- W2980498330 isParatext "false" @default.
- W2980498330 isRetracted "false" @default.
- W2980498330 magId "2980498330" @default.
- W2980498330 workType "article" @default.