Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980502190> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2980502190 endingPage "3966" @default.
- W2980502190 startingPage "3966" @default.
- W2980502190 abstract "Performing numerous simulations of a building component, for example to assess its hygrothermal performance with consideration of multiple uncertain input parameters, can easily become computationally inhibitive. To solve this issue, the hygrothermal model can be replaced by a metamodel, a much simpler mathematical model which mimics the original model with a strongly reduced calculation time. In this paper, convolutional neural networks predicting the hygrothermal time series (e.g., temperature, relative humidity, moisture content) are used to that aim. A strategy is presented to optimise the networks’ hyper-parameters, using the Grey-Wolf Optimiser algorithm. Based on this optimisation, some hyper-parameters were found to have a significant impact on the prediction performance, whereas others were less important. In this paper, this approach is applied to the hygrothermal response of a massive masonry wall, for which the prediction performance and the training time were evaluated. The outcomes show that, with well-tuned hyper-parameter settings, convolutional neural networks are able to capture the complex patterns of the hygrothermal response accurately and are thus well-suited to replace time-consuming standard hygrothermal models." @default.
- W2980502190 created "2019-10-25" @default.
- W2980502190 creator A5011721772 @default.
- W2980502190 creator A5024520293 @default.
- W2980502190 creator A5035628177 @default.
- W2980502190 date "2019-10-18" @default.
- W2980502190 modified "2023-10-02" @default.
- W2980502190 title "Optimising Convolutional Neural Networks to Predict the Hygrothermal Performance of Building Components" @default.
- W2980502190 cites W1854863997 @default.
- W2980502190 cites W1978200695 @default.
- W2980502190 cites W2023739188 @default.
- W2980502190 cites W2061438946 @default.
- W2980502190 cites W2071787897 @default.
- W2980502190 cites W2079237465 @default.
- W2980502190 cites W2089230828 @default.
- W2980502190 cites W2094476403 @default.
- W2980502190 cites W2302353144 @default.
- W2980502190 cites W2311474002 @default.
- W2980502190 cites W2747979560 @default.
- W2980502190 cites W2751530762 @default.
- W2980502190 cites W2767041280 @default.
- W2980502190 cites W2777645380 @default.
- W2980502190 cites W2795419592 @default.
- W2980502190 cites W2896338985 @default.
- W2980502190 cites W2898819725 @default.
- W2980502190 cites W2956186421 @default.
- W2980502190 doi "https://doi.org/10.3390/en12203966" @default.
- W2980502190 hasPublicationYear "2019" @default.
- W2980502190 type Work @default.
- W2980502190 sameAs 2980502190 @default.
- W2980502190 citedByCount "11" @default.
- W2980502190 countsByYear W29805021902020 @default.
- W2980502190 countsByYear W29805021902021 @default.
- W2980502190 countsByYear W29805021902023 @default.
- W2980502190 crossrefType "journal-article" @default.
- W2980502190 hasAuthorship W2980502190A5011721772 @default.
- W2980502190 hasAuthorship W2980502190A5024520293 @default.
- W2980502190 hasAuthorship W2980502190A5035628177 @default.
- W2980502190 hasBestOaLocation W29805021901 @default.
- W2980502190 hasConcept C119857082 @default.
- W2980502190 hasConcept C121332964 @default.
- W2980502190 hasConcept C127413603 @default.
- W2980502190 hasConcept C154945302 @default.
- W2980502190 hasConcept C168167062 @default.
- W2980502190 hasConcept C199360897 @default.
- W2980502190 hasConcept C41008148 @default.
- W2980502190 hasConcept C50644808 @default.
- W2980502190 hasConcept C535899295 @default.
- W2980502190 hasConcept C66938386 @default.
- W2980502190 hasConcept C81363708 @default.
- W2980502190 hasConcept C86610423 @default.
- W2980502190 hasConcept C97355855 @default.
- W2980502190 hasConceptScore W2980502190C119857082 @default.
- W2980502190 hasConceptScore W2980502190C121332964 @default.
- W2980502190 hasConceptScore W2980502190C127413603 @default.
- W2980502190 hasConceptScore W2980502190C154945302 @default.
- W2980502190 hasConceptScore W2980502190C168167062 @default.
- W2980502190 hasConceptScore W2980502190C199360897 @default.
- W2980502190 hasConceptScore W2980502190C41008148 @default.
- W2980502190 hasConceptScore W2980502190C50644808 @default.
- W2980502190 hasConceptScore W2980502190C535899295 @default.
- W2980502190 hasConceptScore W2980502190C66938386 @default.
- W2980502190 hasConceptScore W2980502190C81363708 @default.
- W2980502190 hasConceptScore W2980502190C86610423 @default.
- W2980502190 hasConceptScore W2980502190C97355855 @default.
- W2980502190 hasFunder F4320332999 @default.
- W2980502190 hasIssue "20" @default.
- W2980502190 hasLocation W29805021901 @default.
- W2980502190 hasLocation W29805021902 @default.
- W2980502190 hasLocation W29805021903 @default.
- W2980502190 hasLocation W29805021904 @default.
- W2980502190 hasOpenAccess W2980502190 @default.
- W2980502190 hasPrimaryLocation W29805021901 @default.
- W2980502190 hasRelatedWork W2379533788 @default.
- W2980502190 hasRelatedWork W2748454020 @default.
- W2980502190 hasRelatedWork W2961085424 @default.
- W2980502190 hasRelatedWork W3016958897 @default.
- W2980502190 hasRelatedWork W3021430260 @default.
- W2980502190 hasRelatedWork W3027997911 @default.
- W2980502190 hasRelatedWork W3181746755 @default.
- W2980502190 hasRelatedWork W4287776258 @default.
- W2980502190 hasRelatedWork W4306674287 @default.
- W2980502190 hasRelatedWork W4224009465 @default.
- W2980502190 hasVolume "12" @default.
- W2980502190 isParatext "false" @default.
- W2980502190 isRetracted "false" @default.
- W2980502190 magId "2980502190" @default.
- W2980502190 workType "article" @default.