Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980521818> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2980521818 endingPage "2163" @default.
- W2980521818 startingPage "2151" @default.
- W2980521818 abstract "Combining natural language processing technology, image analysis technology and malware detection technology, a novel Android malware detection method, named BIHAD (an improved IndRNN and attention-treated DenseNet-based pipeline model), is proposed in this paper. First, in order to describe the be havior of Android malware, multiple features are used to construct a more stable discriminant method. Second, the embedding technology is introduced to map all behavior information into a vector space, which implements the extraction of the joint embedded information of semantics and images. Third, an improved Independently Recurrent Neural Network (IndRNN) is used to extract valuable texture information from the original values of the gray image, and effectively utilized the long distance information contained in the gray image. Finally, Hierarchical Attention Dense Convolutional Network (HADenseNet) is used to ensure the maximization of information flow between layers in the network, improving the utilization of semantic distribution and spatial context information. Especially, Hierarchical Attention can enhance the representational ability for key features. The comparison of the BIHAD model with several existing malware detection methods indicated a significant improvement in F-score achieved by the BIHAD." @default.
- W2980521818 created "2019-10-25" @default.
- W2980521818 creator A5025115048 @default.
- W2980521818 creator A5037947055 @default.
- W2980521818 creator A5040965183 @default.
- W2980521818 creator A5057774088 @default.
- W2980521818 creator A5075221279 @default.
- W2980521818 date "2020-02-06" @default.
- W2980521818 modified "2023-10-16" @default.
- W2980521818 title "Combining multi-features with a neural joint model for Android malware detection" @default.
- W2980521818 cites W2122672392 @default.
- W2980521818 cites W2132093718 @default.
- W2980521818 cites W2167003418 @default.
- W2980521818 cites W2313513770 @default.
- W2980521818 cites W2407313496 @default.
- W2980521818 cites W2470673105 @default.
- W2980521818 cites W2594215738 @default.
- W2980521818 cites W2598123501 @default.
- W2980521818 cites W2603160474 @default.
- W2980521818 cites W2620844046 @default.
- W2980521818 cites W2766473800 @default.
- W2980521818 cites W2780640153 @default.
- W2980521818 cites W2789983203 @default.
- W2980521818 cites W2795033129 @default.
- W2980521818 cites W2795386069 @default.
- W2980521818 cites W2800087172 @default.
- W2980521818 cites W2811511039 @default.
- W2980521818 cites W2886968501 @default.
- W2980521818 cites W2891412322 @default.
- W2980521818 cites W2941199301 @default.
- W2980521818 cites W2952750365 @default.
- W2980521818 cites W2963003683 @default.
- W2980521818 cites W2963446712 @default.
- W2980521818 cites W2963461515 @default.
- W2980521818 cites W2964347220 @default.
- W2980521818 cites W967998618 @default.
- W2980521818 doi "https://doi.org/10.3233/jifs-190888" @default.
- W2980521818 hasPublicationYear "2020" @default.
- W2980521818 type Work @default.
- W2980521818 sameAs 2980521818 @default.
- W2980521818 citedByCount "2" @default.
- W2980521818 countsByYear W29805218182021 @default.
- W2980521818 countsByYear W29805218182023 @default.
- W2980521818 crossrefType "journal-article" @default.
- W2980521818 hasAuthorship W2980521818A5025115048 @default.
- W2980521818 hasAuthorship W2980521818A5037947055 @default.
- W2980521818 hasAuthorship W2980521818A5040965183 @default.
- W2980521818 hasAuthorship W2980521818A5057774088 @default.
- W2980521818 hasAuthorship W2980521818A5075221279 @default.
- W2980521818 hasConcept C111919701 @default.
- W2980521818 hasConcept C119857082 @default.
- W2980521818 hasConcept C124101348 @default.
- W2980521818 hasConcept C153180895 @default.
- W2980521818 hasConcept C154945302 @default.
- W2980521818 hasConcept C2989133298 @default.
- W2980521818 hasConcept C41008148 @default.
- W2980521818 hasConcept C541664917 @default.
- W2980521818 hasConcept C557433098 @default.
- W2980521818 hasConcept C81363708 @default.
- W2980521818 hasConceptScore W2980521818C111919701 @default.
- W2980521818 hasConceptScore W2980521818C119857082 @default.
- W2980521818 hasConceptScore W2980521818C124101348 @default.
- W2980521818 hasConceptScore W2980521818C153180895 @default.
- W2980521818 hasConceptScore W2980521818C154945302 @default.
- W2980521818 hasConceptScore W2980521818C2989133298 @default.
- W2980521818 hasConceptScore W2980521818C41008148 @default.
- W2980521818 hasConceptScore W2980521818C541664917 @default.
- W2980521818 hasConceptScore W2980521818C557433098 @default.
- W2980521818 hasConceptScore W2980521818C81363708 @default.
- W2980521818 hasIssue "2" @default.
- W2980521818 hasLocation W29805218181 @default.
- W2980521818 hasOpenAccess W2980521818 @default.
- W2980521818 hasPrimaryLocation W29805218181 @default.
- W2980521818 hasRelatedWork W1963923654 @default.
- W2980521818 hasRelatedWork W1974604873 @default.
- W2980521818 hasRelatedWork W2507113366 @default.
- W2980521818 hasRelatedWork W2527064328 @default.
- W2980521818 hasRelatedWork W2560361988 @default.
- W2980521818 hasRelatedWork W2717179875 @default.
- W2980521818 hasRelatedWork W2782775281 @default.
- W2980521818 hasRelatedWork W4249118297 @default.
- W2980521818 hasRelatedWork W4312334973 @default.
- W2980521818 hasRelatedWork W4327939473 @default.
- W2980521818 hasVolume "38" @default.
- W2980521818 isParatext "false" @default.
- W2980521818 isRetracted "false" @default.
- W2980521818 magId "2980521818" @default.
- W2980521818 workType "article" @default.