Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980555718> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2980555718 endingPage "178" @default.
- W2980555718 startingPage "167" @default.
- W2980555718 abstract "Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct sum of Z2(M) and a Z2-torsionfree Rickart submodule. It is shown under some assumptions that the class of right perfect rings R for which every right R-module M is Z2(M)-inverse split (Z(M)-inverse split) is precisely that of right GV-rings." @default.
- W2980555718 created "2019-10-25" @default.
- W2980555718 creator A5022065822 @default.
- W2980555718 creator A5065069687 @default.
- W2980555718 date "2020-01-01" @default.
- W2980555718 modified "2023-09-23" @default.
- W2980555718 title "A KIND OF F-INVERSE SPLIT MODULES" @default.
- W2980555718 doi "https://doi.org/10.22044/jas.2019.7211.1353" @default.
- W2980555718 hasPublicationYear "2020" @default.
- W2980555718 type Work @default.
- W2980555718 sameAs 2980555718 @default.
- W2980555718 citedByCount "0" @default.
- W2980555718 crossrefType "journal-article" @default.
- W2980555718 hasAuthorship W2980555718A5022065822 @default.
- W2980555718 hasAuthorship W2980555718A5065069687 @default.
- W2980555718 hasConcept C114614502 @default.
- W2980555718 hasConcept C116858840 @default.
- W2980555718 hasConcept C118615104 @default.
- W2980555718 hasConcept C190470478 @default.
- W2980555718 hasConcept C202444582 @default.
- W2980555718 hasConcept C207467116 @default.
- W2980555718 hasConcept C2524010 @default.
- W2980555718 hasConcept C33923547 @default.
- W2980555718 hasConcept C37914503 @default.
- W2980555718 hasConceptScore W2980555718C114614502 @default.
- W2980555718 hasConceptScore W2980555718C116858840 @default.
- W2980555718 hasConceptScore W2980555718C118615104 @default.
- W2980555718 hasConceptScore W2980555718C190470478 @default.
- W2980555718 hasConceptScore W2980555718C202444582 @default.
- W2980555718 hasConceptScore W2980555718C207467116 @default.
- W2980555718 hasConceptScore W2980555718C2524010 @default.
- W2980555718 hasConceptScore W2980555718C33923547 @default.
- W2980555718 hasConceptScore W2980555718C37914503 @default.
- W2980555718 hasIssue "2" @default.
- W2980555718 hasLocation W29805557181 @default.
- W2980555718 hasOpenAccess W2980555718 @default.
- W2980555718 hasPrimaryLocation W29805557181 @default.
- W2980555718 hasRelatedWork W2025550277 @default.
- W2980555718 hasRelatedWork W2031809215 @default.
- W2980555718 hasRelatedWork W2051151415 @default.
- W2980555718 hasRelatedWork W2073196970 @default.
- W2980555718 hasRelatedWork W2151712880 @default.
- W2980555718 hasRelatedWork W2192925845 @default.
- W2980555718 hasRelatedWork W2328326981 @default.
- W2980555718 hasRelatedWork W2465945285 @default.
- W2980555718 hasRelatedWork W2528724315 @default.
- W2980555718 hasRelatedWork W2804158661 @default.
- W2980555718 hasRelatedWork W2890645610 @default.
- W2980555718 hasRelatedWork W2924378913 @default.
- W2980555718 hasRelatedWork W2972170594 @default.
- W2980555718 hasRelatedWork W3008487518 @default.
- W2980555718 hasRelatedWork W3010611797 @default.
- W2980555718 hasRelatedWork W3140334772 @default.
- W2980555718 hasRelatedWork W3144188874 @default.
- W2980555718 hasRelatedWork W3169750378 @default.
- W2980555718 hasRelatedWork W201909358 @default.
- W2980555718 hasRelatedWork W2422472160 @default.
- W2980555718 hasVolume "7" @default.
- W2980555718 isParatext "false" @default.
- W2980555718 isRetracted "false" @default.
- W2980555718 magId "2980555718" @default.
- W2980555718 workType "article" @default.